Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import html | |
import string | |
import ftfy | |
import regex as re | |
from transformers import AutoTokenizer | |
__all__ = ["HuggingfaceTokenizer"] | |
def basic_clean(text): | |
text = ftfy.fix_text(text) | |
text = html.unescape(html.unescape(text)) | |
return text.strip() | |
def whitespace_clean(text): | |
text = re.sub(r"\s+", " ", text) | |
text = text.strip() | |
return text | |
def canonicalize(text, keep_punctuation_exact_string=None): | |
text = text.replace("_", " ") | |
if keep_punctuation_exact_string: | |
text = keep_punctuation_exact_string.join( | |
part.translate(str.maketrans("", "", string.punctuation)) | |
for part in text.split(keep_punctuation_exact_string) | |
) | |
else: | |
text = text.translate(str.maketrans("", "", string.punctuation)) | |
text = text.lower() | |
text = re.sub(r"\s+", " ", text) | |
return text.strip() | |
class HuggingfaceTokenizer: | |
def __init__(self, name, seq_len=None, clean=None, **kwargs): | |
assert clean in (None, "whitespace", "lower", "canonicalize") | |
self.name = name | |
self.seq_len = seq_len | |
self.clean = clean | |
# init tokenizer | |
self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs) | |
self.vocab_size = self.tokenizer.vocab_size | |
def __call__(self, sequence, **kwargs): | |
return_mask = kwargs.pop("return_mask", False) | |
# arguments | |
_kwargs = {"return_tensors": "pt"} | |
if self.seq_len is not None: | |
_kwargs.update({"padding": "max_length", "truncation": True, "max_length": self.seq_len}) | |
_kwargs.update(**kwargs) | |
# tokenization | |
if isinstance(sequence, str): | |
sequence = [sequence] | |
if self.clean: | |
sequence = [self._clean(u) for u in sequence] | |
ids = self.tokenizer(sequence, **_kwargs) | |
# output | |
if return_mask: | |
return ids.input_ids, ids.attention_mask | |
else: | |
return ids.input_ids | |
def _clean(self, text): | |
if self.clean == "whitespace": | |
text = whitespace_clean(basic_clean(text)) | |
elif self.clean == "lower": | |
text = whitespace_clean(basic_clean(text)).lower() | |
elif self.clean == "canonicalize": | |
text = canonicalize(basic_clean(text)) | |
return text | |