suryadev1's picture
fine
5c72fe4
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import numpy as np
from keras.preprocessing.sequence import pad_sequences
from transformers import BertTokenizer
from transformers import BertForSequenceClassification
import random
from sklearn.metrics import f1_score
from utils import *
import os
import argparse
import warnings
warnings.filterwarnings("ignore")
class ModelWithTemperature(nn.Module):
"""
A thin decorator, which wraps a model with temperature scaling
model (nn.Module):
A classification neural network
NB: Output of the neural network should be the classification logits,
NOT the softmax (or log softmax)!
"""
def __init__(self, model):
super(ModelWithTemperature, self).__init__()
self.model = model
self.temperature = nn.Parameter(torch.ones(1) * 1.5)
def forward(self, input_ids, token_type_ids, attention_mask):
logits = self.model(input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)[0]
return self.temperature_scale(logits)
def temperature_scale(self, logits):
"""
Perform temperature scaling on logits
"""
# Expand temperature to match the size of logits
temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1))
return logits / temperature
# This function probably should live outside of this class, but whatever
def set_temperature(self, valid_loader, args):
"""
Tune the tempearature of the model (using the validation set).
We're going to set it to optimize NLL.
valid_loader (DataLoader): validation set loader
"""
nll_criterion = nn.CrossEntropyLoss()
ece_criterion = ECE().to(args.device)
# First: collect all the logits and labels for the validation set
logits_list = []
labels_list = []
with torch.no_grad():
for step, batch in enumerate(valid_loader):
batch = tuple(t.to(args.device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
logits = self.model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
logits_list.append(logits)
labels_list.append(b_labels)
logits = torch.cat(logits_list)
labels = torch.cat(labels_list)
# Calculate NLL and ECE before temperature scaling
before_temperature_nll = nll_criterion(logits, labels).item()
before_temperature_ece = ece_criterion(logits, labels).item()
print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece))
# Next: optimize the temperature w.r.t. NLL
optimizer = optim.LBFGS([self.temperature], lr=0.01, max_iter=50)
def eval():
loss = nll_criterion(self.temperature_scale(logits), labels)
loss.backward()
return loss
optimizer.step(eval)
# Calculate NLL and ECE after temperature scaling
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item()
print('Optimal temperature: %.3f' % self.temperature.item())
print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece))
return self
class ECE(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
class ECE_v2(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE_v2, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, softmaxes, labels):
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=softmaxes.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
def accurate_nb(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def apply_dropout(m):
if type(m) == nn.Dropout:
m.train()
def main():
parser = argparse.ArgumentParser(description='Test code - measure the detection peformance')
parser.add_argument('--eva_iter', default=1, type=int, help='number of passes for mc-dropout when evaluation')
parser.add_argument('--model', type=str, choices=['base', 'manifold-smoothing', 'mc-dropout','temperature'], default='base')
parser.add_argument('--seed', type=int, default=0, help='random seed for test')
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.")
parser.add_argument('--index', type=int, default=0, help='random seed you used during training')
parser.add_argument('--in_dataset', required=True, help='target dataset: 20news')
parser.add_argument('--out_dataset', required=True, help='out-of-dist dataset')
parser.add_argument('--eval_batch_size', type=int, default=32)
parser.add_argument('--saved_dataset', type=str, default='n')
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training")
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label")
parser.add_argument('--eps_in', default=0.0001, type=float, help="Perturbation size of in-domain adversarial training")
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
set_seed(args)
outf = 'test/'+args.model+'-'+str(args.index)
if not os.path.isdir(outf):
os.makedirs(outf)
if args.model == 'base':
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
pretrained_dir = './model_save/{}'.format(dirname)
# Load a trained model and vocabulary that you have fine-tuned
model = BertForSequenceClassification.from_pretrained(pretrained_dir)
model.to(args.device)
print('Load Tekenizer')
elif args.model == 'mc-dropout':
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
pretrained_dir = './model_save/{}'.format(dirname)
# Load a trained model and vocabulary that you have fine-tuned
model = BertForSequenceClassification.from_pretrained(pretrained_dir)
model.to(args.device)
elif args.model == 'temperature':
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
pretrained_dir = './model_save/{}'.format(dirname)
orig_model = BertForSequenceClassification.from_pretrained(pretrained_dir)
orig_model.to(args.device)
model = ModelWithTemperature(orig_model)
model.to(args.device)
elif args.model == 'manifold-smoothing':
dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.in_dataset, args.index, args.eps_in, args.eps_y, args.eps_out)
print(dirname)
pretrained_dir = './model_save/{}'.format(dirname)
model = BertForSequenceClassification.from_pretrained(pretrained_dir)
model.to(args.device)
if args.saved_dataset == 'n':
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.in_dataset)
_, _, nt_test_sentences, _, _, nt_test_labels = load_dataset(args.out_dataset)
val_input_ids = []
test_input_ids = []
nt_test_input_ids = []
if args.in_dataset == '20news' or args.in_dataset == '20news-15':
MAX_LEN = 150
else:
MAX_LEN = 256
for sent in val_sentences:
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
truncation= True,
max_length = MAX_LEN, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
val_input_ids.append(encoded_sent)
for sent in test_sentences:
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
truncation= True,
max_length = MAX_LEN, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
test_input_ids.append(encoded_sent)
for sent in nt_test_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
truncation= True,
max_length = MAX_LEN,
)
nt_test_input_ids.append(encoded_sent)
# Pad our input tokens
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
nt_test_input_ids = pad_sequences(nt_test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
val_attention_masks = []
test_attention_masks = []
nt_test_attention_masks = []
for seq in val_input_ids:
seq_mask = [float(i>0) for i in seq]
val_attention_masks.append(seq_mask)
for seq in test_input_ids:
seq_mask = [float(i>0) for i in seq]
test_attention_masks.append(seq_mask)
for seq in nt_test_input_ids:
seq_mask = [float(i>0) for i in seq]
nt_test_attention_masks.append(seq_mask)
val_inputs = torch.tensor(val_input_ids)
val_labels = torch.tensor(val_labels)
val_masks = torch.tensor(val_attention_masks)
test_inputs = torch.tensor(test_input_ids)
test_labels = torch.tensor(test_labels)
test_masks = torch.tensor(test_attention_masks)
nt_test_inputs = torch.tensor(nt_test_input_ids)
nt_test_labels = torch.tensor(nt_test_labels)
nt_test_masks = torch.tensor(nt_test_attention_masks)
val_data = TensorDataset(val_inputs, val_masks, val_labels)
test_data = TensorDataset(test_inputs, test_masks, test_labels)
nt_test_data = TensorDataset(nt_test_inputs, nt_test_masks, nt_test_labels)
dataset_dir = 'dataset/test'
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
torch.save(val_data, dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset))
torch.save(test_data, dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset))
torch.save(nt_test_data, dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset))
else:
dataset_dir = 'dataset/test'
val_data = torch.load(dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset))
test_data = torch.load(dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset))
nt_test_data = torch.load(dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset))
######## saved dataset
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size)
nt_test_sampler = SequentialSampler(nt_test_data)
nt_test_dataloader = DataLoader(nt_test_data, sampler=nt_test_sampler, batch_size=args.eval_batch_size)
val_sampler = SequentialSampler(val_data)
val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=args.eval_batch_size)
if args.model == 'temperature':
model.set_temperature(val_dataloader, args)
model.eval()
if args.model == 'mc-dropout':
model.apply(apply_dropout)
correct = 0
total = 0
output_list = []
labels_list = []
##### validation dat
with torch.no_grad():
for step, batch in enumerate(val_dataloader):
batch = tuple(t.to(args.device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
total += b_labels.shape[0]
batch_output = 0
for j in range(args.eva_iter):
if args.model == 'temperature':
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) #logits
else:
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] #logits
batch_output = batch_output + F.softmax(current_batch, dim=1)
batch_output = batch_output/args.eva_iter
output_list.append(batch_output)
labels_list.append(b_labels)
score, predicted = batch_output.max(1)
correct += predicted.eq(b_labels).sum().item()
###calculate accuracy and ECE
val_eval_accuracy = correct/total
print("Val Accuracy: {}".format(val_eval_accuracy))
ece_criterion = ECE_v2().to(args.device)
softmaxes_ece = torch.cat(output_list)
labels_ece = torch.cat(labels_list)
val_ece = ece_criterion(softmaxes_ece, labels_ece).item()
print('ECE on Val data: {}'.format(val_ece))
#### Test data
correct = 0
total = 0
output_list = []
labels_list = []
predict_list = []
true_list = []
true_list_ood = []
predict_mis = []
predict_in = []
score_list = []
correct_index_all = []
## test on in-distribution test set
with torch.no_grad():
for step, batch in enumerate(test_dataloader):
batch = tuple(t.to(args.device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
total += b_labels.shape[0]
batch_output = 0
for j in range(args.eva_iter):
if args.model == 'temperature':
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) #logits
else:
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] #logits
batch_output = batch_output + F.softmax(current_batch, dim=1)
batch_output = batch_output/args.eva_iter
output_list.append(batch_output)
labels_list.append(b_labels)
score, predicted = batch_output.max(1)
correct += predicted.eq(b_labels).sum().item()
correct_index = (predicted == b_labels)
correct_index_all.append(correct_index)
score_list.append(score)
###calcutae accuracy
eval_accuracy = correct/total
print("Test Accuracy: {}".format(eval_accuracy))
##calculate ece
ece_criterion = ECE_v2().to(args.device)
softmaxes_ece = torch.cat(output_list)
labels_ece = torch.cat(labels_list)
ece = ece_criterion(softmaxes_ece, labels_ece).item()
print('ECE on Test data: {}'.format(ece))
#confidence for in-distribution data
score_in_array = torch.cat(score_list)
#indices of data that are classified correctly
correct_array = torch.cat(correct_index_all)
label_array = torch.cat(labels_list)
### test on out-of-distribution data
predict_ood = []
score_ood_list = []
true_list_ood = []
with torch.no_grad():
for step, batch in enumerate(nt_test_dataloader):
batch = tuple(t.to(args.device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
batch_output = 0
for j in range(args.eva_iter):
if args.model == 'temperature':
current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)
else:
current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
batch_output = batch_output + F.softmax(current_batch, dim=1)
batch_output = batch_output/args.eva_iter
score_out, _ = batch_output.max(1)
score_ood_list.append(score_out)
score_ood_array = torch.cat(score_ood_list)
label_array = label_array.cpu().numpy()
score_ood_array = score_ood_array.cpu().numpy()
score_in_array = score_in_array.cpu().numpy()
correct_array = correct_array.cpu().numpy()
####### calculate NBAUCC for detection task
predict_o = np.zeros(len(score_in_array)+len(score_ood_array))
true_o = np.ones(len(score_in_array)+len(score_ood_array))
true_o[:len(score_in_array)] = 0 ## in-distribution data as false, ood data as positive
true_mis = np.ones(len(score_in_array))
true_mis[correct_array] = 0 ##true instances as false, misclassified instances as positive
predict_mis = np.zeros(len(score_in_array))
ood_sum = 0
mis_sum = 0
ood_sum_list = []
mis_sum_list = []
#### upper bound of the threshold tau for NBAUCC
stop_points = [0.50, 1.]
for threshold in np.arange(0., 1.01, 0.02):
predict_ood_index1 = (score_in_array < threshold)
predict_ood_index2 = (score_ood_array < threshold)
predict_ood_index = np.concatenate((predict_ood_index1, predict_ood_index2), axis=0)
predict_o[predict_ood_index] = 1
predict_mis[score_in_array<threshold] = 1
ood = f1_score(true_o, predict_o, average='binary') ##### detection f1 score for a specific threshold
mis = f1_score(true_mis, predict_mis, average='binary')
ood_sum += ood*0.02
mis_sum += mis*0.02
if threshold in stop_points:
ood_sum_list.append(ood_sum)
mis_sum_list.append(mis_sum)
for i in range(len(stop_points)):
print('OOD detection, NBAUCC {}: {}'.format(stop_points[i], ood_sum_list[i]/stop_points[i]))
print('misclassification detection, NBAUCC {}: {}'.format(stop_points[i], mis_sum_list[i]/stop_points[i]))
if __name__ == "__main__":
main()