Spaces:
Running
Running
import torch | |
from torch import nn, optim | |
from torch.nn import functional as F | |
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler | |
import numpy as np | |
from keras.preprocessing.sequence import pad_sequences | |
from transformers import BertTokenizer | |
from transformers import BertForSequenceClassification | |
import random | |
from sklearn.metrics import f1_score | |
from utils import * | |
import os | |
import argparse | |
import warnings | |
warnings.filterwarnings("ignore") | |
class ModelWithTemperature(nn.Module): | |
""" | |
A thin decorator, which wraps a model with temperature scaling | |
model (nn.Module): | |
A classification neural network | |
NB: Output of the neural network should be the classification logits, | |
NOT the softmax (or log softmax)! | |
""" | |
def __init__(self, model): | |
super(ModelWithTemperature, self).__init__() | |
self.model = model | |
self.temperature = nn.Parameter(torch.ones(1) * 1.5) | |
def forward(self, input_ids, token_type_ids, attention_mask): | |
logits = self.model(input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)[0] | |
return self.temperature_scale(logits) | |
def temperature_scale(self, logits): | |
""" | |
Perform temperature scaling on logits | |
""" | |
# Expand temperature to match the size of logits | |
temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1)) | |
return logits / temperature | |
# This function probably should live outside of this class, but whatever | |
def set_temperature(self, valid_loader, args): | |
""" | |
Tune the tempearature of the model (using the validation set). | |
We're going to set it to optimize NLL. | |
valid_loader (DataLoader): validation set loader | |
""" | |
nll_criterion = nn.CrossEntropyLoss() | |
ece_criterion = ECE().to(args.device) | |
# First: collect all the logits and labels for the validation set | |
logits_list = [] | |
labels_list = [] | |
with torch.no_grad(): | |
for step, batch in enumerate(valid_loader): | |
batch = tuple(t.to(args.device) for t in batch) | |
b_input_ids, b_input_mask, b_labels = batch | |
logits = self.model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] | |
logits_list.append(logits) | |
labels_list.append(b_labels) | |
logits = torch.cat(logits_list) | |
labels = torch.cat(labels_list) | |
# Calculate NLL and ECE before temperature scaling | |
before_temperature_nll = nll_criterion(logits, labels).item() | |
before_temperature_ece = ece_criterion(logits, labels).item() | |
print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece)) | |
# Next: optimize the temperature w.r.t. NLL | |
optimizer = optim.LBFGS([self.temperature], lr=0.01, max_iter=50) | |
def eval(): | |
loss = nll_criterion(self.temperature_scale(logits), labels) | |
loss.backward() | |
return loss | |
optimizer.step(eval) | |
# Calculate NLL and ECE after temperature scaling | |
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item() | |
after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item() | |
print('Optimal temperature: %.3f' % self.temperature.item()) | |
print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece)) | |
return self | |
class ECE(nn.Module): | |
def __init__(self, n_bins=15): | |
""" | |
n_bins (int): number of confidence interval bins | |
""" | |
super(ECE, self).__init__() | |
bin_boundaries = torch.linspace(0, 1, n_bins + 1) | |
self.bin_lowers = bin_boundaries[:-1] | |
self.bin_uppers = bin_boundaries[1:] | |
def forward(self, logits, labels): | |
softmaxes = F.softmax(logits, dim=1) | |
confidences, predictions = torch.max(softmaxes, 1) | |
accuracies = predictions.eq(labels) | |
ece = torch.zeros(1, device=logits.device) | |
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): | |
# Calculated |confidence - accuracy| in each bin | |
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) | |
prop_in_bin = in_bin.float().mean() | |
if prop_in_bin.item() > 0: | |
accuracy_in_bin = accuracies[in_bin].float().mean() | |
avg_confidence_in_bin = confidences[in_bin].mean() | |
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin | |
return ece | |
class ECE_v2(nn.Module): | |
def __init__(self, n_bins=15): | |
""" | |
n_bins (int): number of confidence interval bins | |
""" | |
super(ECE_v2, self).__init__() | |
bin_boundaries = torch.linspace(0, 1, n_bins + 1) | |
self.bin_lowers = bin_boundaries[:-1] | |
self.bin_uppers = bin_boundaries[1:] | |
def forward(self, softmaxes, labels): | |
confidences, predictions = torch.max(softmaxes, 1) | |
accuracies = predictions.eq(labels) | |
ece = torch.zeros(1, device=softmaxes.device) | |
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers): | |
# Calculated |confidence - accuracy| in each bin | |
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item()) | |
prop_in_bin = in_bin.float().mean() | |
if prop_in_bin.item() > 0: | |
accuracy_in_bin = accuracies[in_bin].float().mean() | |
avg_confidence_in_bin = confidences[in_bin].mean() | |
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin | |
return ece | |
def accurate_nb(preds, labels): | |
pred_flat = np.argmax(preds, axis=1).flatten() | |
labels_flat = labels.flatten() | |
return np.sum(pred_flat == labels_flat) | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
def apply_dropout(m): | |
if type(m) == nn.Dropout: | |
m.train() | |
def main(): | |
parser = argparse.ArgumentParser(description='Test code - measure the detection peformance') | |
parser.add_argument('--eva_iter', default=1, type=int, help='number of passes for mc-dropout when evaluation') | |
parser.add_argument('--model', type=str, choices=['base', 'manifold-smoothing', 'mc-dropout','temperature'], default='base') | |
parser.add_argument('--seed', type=int, default=0, help='random seed for test') | |
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.") | |
parser.add_argument('--index', type=int, default=0, help='random seed you used during training') | |
parser.add_argument('--in_dataset', required=True, help='target dataset: 20news') | |
parser.add_argument('--out_dataset', required=True, help='out-of-dist dataset') | |
parser.add_argument('--eval_batch_size', type=int, default=32) | |
parser.add_argument('--saved_dataset', type=str, default='n') | |
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training") | |
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label") | |
parser.add_argument('--eps_in', default=0.0001, type=float, help="Perturbation size of in-domain adversarial training") | |
args = parser.parse_args() | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
args.device = device | |
set_seed(args) | |
outf = 'test/'+args.model+'-'+str(args.index) | |
if not os.path.isdir(outf): | |
os.makedirs(outf) | |
if args.model == 'base': | |
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index) | |
pretrained_dir = './model_save/{}'.format(dirname) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = BertForSequenceClassification.from_pretrained(pretrained_dir) | |
model.to(args.device) | |
print('Load Tekenizer') | |
elif args.model == 'mc-dropout': | |
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index) | |
pretrained_dir = './model_save/{}'.format(dirname) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = BertForSequenceClassification.from_pretrained(pretrained_dir) | |
model.to(args.device) | |
elif args.model == 'temperature': | |
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index) | |
pretrained_dir = './model_save/{}'.format(dirname) | |
orig_model = BertForSequenceClassification.from_pretrained(pretrained_dir) | |
orig_model.to(args.device) | |
model = ModelWithTemperature(orig_model) | |
model.to(args.device) | |
elif args.model == 'manifold-smoothing': | |
dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.in_dataset, args.index, args.eps_in, args.eps_y, args.eps_out) | |
print(dirname) | |
pretrained_dir = './model_save/{}'.format(dirname) | |
model = BertForSequenceClassification.from_pretrained(pretrained_dir) | |
model.to(args.device) | |
if args.saved_dataset == 'n': | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True) | |
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.in_dataset) | |
_, _, nt_test_sentences, _, _, nt_test_labels = load_dataset(args.out_dataset) | |
val_input_ids = [] | |
test_input_ids = [] | |
nt_test_input_ids = [] | |
if args.in_dataset == '20news' or args.in_dataset == '20news-15': | |
MAX_LEN = 150 | |
else: | |
MAX_LEN = 256 | |
for sent in val_sentences: | |
encoded_sent = tokenizer.encode( | |
sent, # Sentence to encode. | |
add_special_tokens = True, # Add '[CLS]' and '[SEP]' | |
truncation= True, | |
max_length = MAX_LEN, # Truncate all sentences. | |
#return_tensors = 'pt', # Return pytorch tensors. | |
) | |
# Add the encoded sentence to the list. | |
val_input_ids.append(encoded_sent) | |
for sent in test_sentences: | |
encoded_sent = tokenizer.encode( | |
sent, # Sentence to encode. | |
add_special_tokens = True, # Add '[CLS]' and '[SEP]' | |
truncation= True, | |
max_length = MAX_LEN, # Truncate all sentences. | |
#return_tensors = 'pt', # Return pytorch tensors. | |
) | |
# Add the encoded sentence to the list. | |
test_input_ids.append(encoded_sent) | |
for sent in nt_test_sentences: | |
encoded_sent = tokenizer.encode( | |
sent, | |
add_special_tokens = True, | |
truncation= True, | |
max_length = MAX_LEN, | |
) | |
nt_test_input_ids.append(encoded_sent) | |
# Pad our input tokens | |
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
nt_test_input_ids = pad_sequences(nt_test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") | |
val_attention_masks = [] | |
test_attention_masks = [] | |
nt_test_attention_masks = [] | |
for seq in val_input_ids: | |
seq_mask = [float(i>0) for i in seq] | |
val_attention_masks.append(seq_mask) | |
for seq in test_input_ids: | |
seq_mask = [float(i>0) for i in seq] | |
test_attention_masks.append(seq_mask) | |
for seq in nt_test_input_ids: | |
seq_mask = [float(i>0) for i in seq] | |
nt_test_attention_masks.append(seq_mask) | |
val_inputs = torch.tensor(val_input_ids) | |
val_labels = torch.tensor(val_labels) | |
val_masks = torch.tensor(val_attention_masks) | |
test_inputs = torch.tensor(test_input_ids) | |
test_labels = torch.tensor(test_labels) | |
test_masks = torch.tensor(test_attention_masks) | |
nt_test_inputs = torch.tensor(nt_test_input_ids) | |
nt_test_labels = torch.tensor(nt_test_labels) | |
nt_test_masks = torch.tensor(nt_test_attention_masks) | |
val_data = TensorDataset(val_inputs, val_masks, val_labels) | |
test_data = TensorDataset(test_inputs, test_masks, test_labels) | |
nt_test_data = TensorDataset(nt_test_inputs, nt_test_masks, nt_test_labels) | |
dataset_dir = 'dataset/test' | |
if not os.path.exists(dataset_dir): | |
os.makedirs(dataset_dir) | |
torch.save(val_data, dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset)) | |
torch.save(test_data, dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset)) | |
torch.save(nt_test_data, dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset)) | |
else: | |
dataset_dir = 'dataset/test' | |
val_data = torch.load(dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset)) | |
test_data = torch.load(dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset)) | |
nt_test_data = torch.load(dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset)) | |
######## saved dataset | |
test_sampler = SequentialSampler(test_data) | |
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size) | |
nt_test_sampler = SequentialSampler(nt_test_data) | |
nt_test_dataloader = DataLoader(nt_test_data, sampler=nt_test_sampler, batch_size=args.eval_batch_size) | |
val_sampler = SequentialSampler(val_data) | |
val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=args.eval_batch_size) | |
if args.model == 'temperature': | |
model.set_temperature(val_dataloader, args) | |
model.eval() | |
if args.model == 'mc-dropout': | |
model.apply(apply_dropout) | |
correct = 0 | |
total = 0 | |
output_list = [] | |
labels_list = [] | |
##### validation dat | |
with torch.no_grad(): | |
for step, batch in enumerate(val_dataloader): | |
batch = tuple(t.to(args.device) for t in batch) | |
b_input_ids, b_input_mask, b_labels = batch | |
total += b_labels.shape[0] | |
batch_output = 0 | |
for j in range(args.eva_iter): | |
if args.model == 'temperature': | |
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) #logits | |
else: | |
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] #logits | |
batch_output = batch_output + F.softmax(current_batch, dim=1) | |
batch_output = batch_output/args.eva_iter | |
output_list.append(batch_output) | |
labels_list.append(b_labels) | |
score, predicted = batch_output.max(1) | |
correct += predicted.eq(b_labels).sum().item() | |
###calculate accuracy and ECE | |
val_eval_accuracy = correct/total | |
print("Val Accuracy: {}".format(val_eval_accuracy)) | |
ece_criterion = ECE_v2().to(args.device) | |
softmaxes_ece = torch.cat(output_list) | |
labels_ece = torch.cat(labels_list) | |
val_ece = ece_criterion(softmaxes_ece, labels_ece).item() | |
print('ECE on Val data: {}'.format(val_ece)) | |
#### Test data | |
correct = 0 | |
total = 0 | |
output_list = [] | |
labels_list = [] | |
predict_list = [] | |
true_list = [] | |
true_list_ood = [] | |
predict_mis = [] | |
predict_in = [] | |
score_list = [] | |
correct_index_all = [] | |
## test on in-distribution test set | |
with torch.no_grad(): | |
for step, batch in enumerate(test_dataloader): | |
batch = tuple(t.to(args.device) for t in batch) | |
b_input_ids, b_input_mask, b_labels = batch | |
total += b_labels.shape[0] | |
batch_output = 0 | |
for j in range(args.eva_iter): | |
if args.model == 'temperature': | |
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) #logits | |
else: | |
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] #logits | |
batch_output = batch_output + F.softmax(current_batch, dim=1) | |
batch_output = batch_output/args.eva_iter | |
output_list.append(batch_output) | |
labels_list.append(b_labels) | |
score, predicted = batch_output.max(1) | |
correct += predicted.eq(b_labels).sum().item() | |
correct_index = (predicted == b_labels) | |
correct_index_all.append(correct_index) | |
score_list.append(score) | |
###calcutae accuracy | |
eval_accuracy = correct/total | |
print("Test Accuracy: {}".format(eval_accuracy)) | |
##calculate ece | |
ece_criterion = ECE_v2().to(args.device) | |
softmaxes_ece = torch.cat(output_list) | |
labels_ece = torch.cat(labels_list) | |
ece = ece_criterion(softmaxes_ece, labels_ece).item() | |
print('ECE on Test data: {}'.format(ece)) | |
#confidence for in-distribution data | |
score_in_array = torch.cat(score_list) | |
#indices of data that are classified correctly | |
correct_array = torch.cat(correct_index_all) | |
label_array = torch.cat(labels_list) | |
### test on out-of-distribution data | |
predict_ood = [] | |
score_ood_list = [] | |
true_list_ood = [] | |
with torch.no_grad(): | |
for step, batch in enumerate(nt_test_dataloader): | |
batch = tuple(t.to(args.device) for t in batch) | |
b_input_ids, b_input_mask, b_labels = batch | |
batch_output = 0 | |
for j in range(args.eva_iter): | |
if args.model == 'temperature': | |
current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) | |
else: | |
current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] | |
batch_output = batch_output + F.softmax(current_batch, dim=1) | |
batch_output = batch_output/args.eva_iter | |
score_out, _ = batch_output.max(1) | |
score_ood_list.append(score_out) | |
score_ood_array = torch.cat(score_ood_list) | |
label_array = label_array.cpu().numpy() | |
score_ood_array = score_ood_array.cpu().numpy() | |
score_in_array = score_in_array.cpu().numpy() | |
correct_array = correct_array.cpu().numpy() | |
####### calculate NBAUCC for detection task | |
predict_o = np.zeros(len(score_in_array)+len(score_ood_array)) | |
true_o = np.ones(len(score_in_array)+len(score_ood_array)) | |
true_o[:len(score_in_array)] = 0 ## in-distribution data as false, ood data as positive | |
true_mis = np.ones(len(score_in_array)) | |
true_mis[correct_array] = 0 ##true instances as false, misclassified instances as positive | |
predict_mis = np.zeros(len(score_in_array)) | |
ood_sum = 0 | |
mis_sum = 0 | |
ood_sum_list = [] | |
mis_sum_list = [] | |
#### upper bound of the threshold tau for NBAUCC | |
stop_points = [0.50, 1.] | |
for threshold in np.arange(0., 1.01, 0.02): | |
predict_ood_index1 = (score_in_array < threshold) | |
predict_ood_index2 = (score_ood_array < threshold) | |
predict_ood_index = np.concatenate((predict_ood_index1, predict_ood_index2), axis=0) | |
predict_o[predict_ood_index] = 1 | |
predict_mis[score_in_array<threshold] = 1 | |
ood = f1_score(true_o, predict_o, average='binary') ##### detection f1 score for a specific threshold | |
mis = f1_score(true_mis, predict_mis, average='binary') | |
ood_sum += ood*0.02 | |
mis_sum += mis*0.02 | |
if threshold in stop_points: | |
ood_sum_list.append(ood_sum) | |
mis_sum_list.append(mis_sum) | |
for i in range(len(stop_points)): | |
print('OOD detection, NBAUCC {}: {}'.format(stop_points[i], ood_sum_list[i]/stop_points[i])) | |
print('misclassification detection, NBAUCC {}: {}'.format(stop_points[i], mis_sum_list[i]/stop_points[i])) | |
if __name__ == "__main__": | |
main() | |