surokpro2's picture
Update README.md
9361188 verified
|
raw
history blame
2.73 kB
metadata
title: Unboxing SDXL with SAEs
app_file: app.py
sdk: gradio
sdk_version: 4.44.1

Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse Autoencoders

modification demostration

This repository contains code to reproduce results from our paper (https://arxiv.org/abs/2410.22366) on using sparse autoencoders (SAEs) to analyze and interpret the internal representations of text-to-image diffusion models, specifically SDXL Turbo.

Repository Structure

|-- SAE/                    # Core sparse autoencoder implementation
|-- SDLens/                 # Tools for analyzing diffusion models
|   `-- hooked_sd_pipeline.py   # Modified stable diffusion pipeline
|-- scripts/
|   |-- collect_latents_dataset.py  # Generate training data
|   `-- train_sae.py                    # Train SAE models
|-- utils/
|   `-- hooks.py           # Hook utility functions
|-- checkpoints/           # Pretrained SAE model checkpoints
|-- app.py                # Demo application
|-- app.ipynb             # Interactive notebook demo
|-- example.ipynb         # Usage examples
`-- requirements.txt      # Python dependencies

Installation

pip install -r requirements.txt

Demo Application

You can try our gradio demo application (app.ipynb) to browse and experiment with 20K+ features of our trained SAEs out-of-the-box. You can find the same notebook on Google Colab.

Usage

  1. Collect latent data from SDXL Turbo:
python scripts/collect_latents_dataset.py --save_path={your_save_path}
  1. Train sparse autoencoders:

    2.1. Insert the path of stored latents and directory to store checkpoints in SAE/config.json

    2.2. Run the training script:

python scripts/train_sae.py

Pretrained Models

We provide pretrained SAE checkpoints for 4 key transformer blocks in SDXL Turbo's U-Net. See example.ipynb for analysis examples and visualization of learned features.

Citation

If you find this code useful in your research, please cite our paper:

@misc{surkov2024unpackingsdxlturbointerpreting,
      title={Unpacking SDXL Turbo: Interpreting Text-to-Image Models with Sparse Autoencoders}, 
      author={Viacheslav Surkov and Chris Wendler and Mikhail Terekhov and Justin Deschenaux and Robert West and Caglar Gulcehre},
      year={2024},
      eprint={2410.22366},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2410.22366}, 
}

Acknowledgements

The SAE component was implemented based on openai/sparse_autoencoder repository.