Spaces:
Sleeping
Sleeping
| import os | |
| from dotenv import load_dotenv | |
| import requests | |
| import json | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import io | |
| from PIL import Image | |
| # Load environment variables | |
| load_dotenv() | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer( | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| url = "https://inference.prodia.com/v2/job" | |
| headers = { | |
| 'accept': 'image/jpeg', | |
| 'content-type': 'application/json', | |
| 'authorization': f'Bearer {os.getenv("PRODIA_KEY")}' | |
| } | |
| data = { | |
| "type": "inference.flux.dev.txt2img.v1", | |
| "config": { | |
| "prompt": prompt, | |
| "guidance_scale": guidance_scale, | |
| "steps": num_inference_steps, | |
| "width": width, | |
| "height": height | |
| } | |
| } | |
| response = requests.post(url, headers=headers, data=json.dumps(data)) | |
| if response.status_code == 200: | |
| image_bytes = io.BytesIO(response.content) | |
| image = Image.open(image_bytes) | |
| return image, seed | |
| else: | |
| return f"Error: {response.status_code}, {response.text}", seed | |
| examples = [ | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "An astronaut riding a green horse", | |
| "A delicious ceviche cheesecake slice", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # Text-to-Image Gradio Template") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| visible=False, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, # Replace with defaults that work for your model | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, # Replace with defaults that work for your model | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=0.0, # Replace with defaults that work for your model | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=25, # Replace with defaults that work for your model | |
| ) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |