import os from dotenv import load_dotenv import requests import json import gradio as gr import numpy as np import random import io from PIL import Image # Load environment variables load_dotenv() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) url = "https://inference.prodia.com/v2/job" headers = { 'accept': 'image/jpeg', 'content-type': 'application/json', 'authorization': f'Bearer {os.getenv("PRODIA_KEY")}' } data = { "type": "inference.flux.dev.txt2img.v1", "config": { "prompt": prompt, "guidance_scale": guidance_scale, "steps": num_inference_steps, "width": width, "height": height } } response = requests.post(url, headers=headers, data=json.dumps(data)) if response.status_code == 200: image_bytes = io.BytesIO(response.content) image = Image.open(image_bytes) return image, seed else: return f"Error: {response.status_code}, {response.text}", seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=25, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()