shic / src /model.py
suny-sht's picture
init
076275f
raw
history blame
2.45 kB
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class LinearClassifierToken(nn.Module):
def __init__(self, in_channels, num_chanel=2, tokenW=32, tokenH=32):
super(LinearClassifierToken, self).__init__()
self.in_channels=in_channels
self.W=tokenW
self.H=tokenH
self.nc=num_chanel
self.conv=torch.nn.Conv2d(in_channels,num_chanel,(1,1))
def forward(self,x):
return self.conv(x.reshape(-1,self.H,self.W,self.in_channels).permute(0,3,1,2))
class DinoV2(nn.Module):
def __init__(self, num_class=16) -> None:
super().__init__()
self.dinov2 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
for param in self.dinov2.parameters():
param.requires_grad = False
n=512
self.classlayer_224 = LinearClassifierToken(in_channels=384,num_chanel=n,tokenW=16,tokenH=16)
self.selu = nn.SELU()
self.to_224 = nn.Sequential(
nn.Conv2d(n,n,kernel_size=5,stride=1,padding=1,bias=False),
nn.Upsample(scale_factor=2),
nn.Conv2d(n,n//2,kernel_size=3,stride=1,padding=1,bias=False),
nn.BatchNorm2d(n//2),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(n//2,n//4,kernel_size=3,stride=1,padding=1,bias=False),
nn.BatchNorm2d(n//4),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(n//4,n//8,kernel_size=3,stride=1,padding=1,bias=False),
nn.BatchNorm2d(n//8),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(n//8,n//16,kernel_size=3,stride=1,padding=1,bias=False),
nn.ReLU(inplace=True)
)
self.conv2class = nn.Conv2d(n//16,num_class,kernel_size=3,stride=1,padding=1,bias=True)
def forward(self, x):
with torch.no_grad():
device = next(self.classlayer_224.parameters()).device
features = self.dinov2.forward_features(x.to(device))['x_norm_patchtokens']
x = self.selu(self.classlayer_224(features))
x = self.to_224(x)
x = self.conv2class(x)
return x
if __name__ == '__main__':
model = DinoV2(16)
model = model.to("cuda")
example_input = torch.rand(1, 3, 224, 224)
# Run the model
output = model(example_input)
# Print the output shape
print(output.shape)