import math import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models class LinearClassifierToken(nn.Module): def __init__(self, in_channels, num_chanel=2, tokenW=32, tokenH=32): super(LinearClassifierToken, self).__init__() self.in_channels=in_channels self.W=tokenW self.H=tokenH self.nc=num_chanel self.conv=torch.nn.Conv2d(in_channels,num_chanel,(1,1)) def forward(self,x): return self.conv(x.reshape(-1,self.H,self.W,self.in_channels).permute(0,3,1,2)) class DinoV2(nn.Module): def __init__(self, num_class=16) -> None: super().__init__() self.dinov2 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14') for param in self.dinov2.parameters(): param.requires_grad = False n=512 self.classlayer_224 = LinearClassifierToken(in_channels=384,num_chanel=n,tokenW=16,tokenH=16) self.selu = nn.SELU() self.to_224 = nn.Sequential( nn.Conv2d(n,n,kernel_size=5,stride=1,padding=1,bias=False), nn.Upsample(scale_factor=2), nn.Conv2d(n,n//2,kernel_size=3,stride=1,padding=1,bias=False), nn.BatchNorm2d(n//2), nn.ReLU(inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(n//2,n//4,kernel_size=3,stride=1,padding=1,bias=False), nn.BatchNorm2d(n//4), nn.ReLU(inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(n//4,n//8,kernel_size=3,stride=1,padding=1,bias=False), nn.BatchNorm2d(n//8), nn.ReLU(inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(n//8,n//16,kernel_size=3,stride=1,padding=1,bias=False), nn.ReLU(inplace=True) ) self.conv2class = nn.Conv2d(n//16,num_class,kernel_size=3,stride=1,padding=1,bias=True) def forward(self, x): with torch.no_grad(): device = next(self.classlayer_224.parameters()).device features = self.dinov2.forward_features(x.to(device))['x_norm_patchtokens'] x = self.selu(self.classlayer_224(features)) x = self.to_224(x) x = self.conv2class(x) return x if __name__ == '__main__': model = DinoV2(16) model = model.to("cuda") example_input = torch.rand(1, 3, 224, 224) # Run the model output = model(example_input) # Print the output shape print(output.shape)