Spaces:
Sleeping
Sleeping
# Natural Language Toolkit: Combinatory Categorial Grammar | |
# | |
# Copyright (C) 2001-2023 NLTK Project | |
# Author: Graeme Gange <ggange@csse.unimelb.edu.au> | |
# URL: <https://www.nltk.org/> | |
# For license information, see LICENSE.TXT | |
""" | |
The lexicon is constructed by calling | |
``lexicon.fromstring(<lexicon string>)``. | |
In order to construct a parser, you also need a rule set. | |
The standard English rules are provided in chart as | |
``chart.DefaultRuleSet``. | |
The parser can then be constructed by calling, for example: | |
``parser = chart.CCGChartParser(<lexicon>, <ruleset>)`` | |
Parsing is then performed by running | |
``parser.parse(<sentence>.split())``. | |
While this returns a list of trees, the default representation | |
of the produced trees is not very enlightening, particularly | |
given that it uses the same tree class as the CFG parsers. | |
It is probably better to call: | |
``chart.printCCGDerivation(<parse tree extracted from list>)`` | |
which should print a nice representation of the derivation. | |
This entire process is shown far more clearly in the demonstration: | |
python chart.py | |
""" | |
import itertools | |
from nltk.ccg.combinator import * | |
from nltk.ccg.combinator import ( | |
BackwardApplication, | |
BackwardBx, | |
BackwardComposition, | |
BackwardSx, | |
BackwardT, | |
ForwardApplication, | |
ForwardComposition, | |
ForwardSubstitution, | |
ForwardT, | |
) | |
from nltk.ccg.lexicon import Token, fromstring | |
from nltk.ccg.logic import * | |
from nltk.parse import ParserI | |
from nltk.parse.chart import AbstractChartRule, Chart, EdgeI | |
from nltk.sem.logic import * | |
from nltk.tree import Tree | |
# Based on the EdgeI class from NLTK. | |
# A number of the properties of the EdgeI interface don't | |
# transfer well to CCGs, however. | |
class CCGEdge(EdgeI): | |
def __init__(self, span, categ, rule): | |
self._span = span | |
self._categ = categ | |
self._rule = rule | |
self._comparison_key = (span, categ, rule) | |
# Accessors | |
def lhs(self): | |
return self._categ | |
def span(self): | |
return self._span | |
def start(self): | |
return self._span[0] | |
def end(self): | |
return self._span[1] | |
def length(self): | |
return self._span[1] - self.span[0] | |
def rhs(self): | |
return () | |
def dot(self): | |
return 0 | |
def is_complete(self): | |
return True | |
def is_incomplete(self): | |
return False | |
def nextsym(self): | |
return None | |
def categ(self): | |
return self._categ | |
def rule(self): | |
return self._rule | |
class CCGLeafEdge(EdgeI): | |
""" | |
Class representing leaf edges in a CCG derivation. | |
""" | |
def __init__(self, pos, token, leaf): | |
self._pos = pos | |
self._token = token | |
self._leaf = leaf | |
self._comparison_key = (pos, token.categ(), leaf) | |
# Accessors | |
def lhs(self): | |
return self._token.categ() | |
def span(self): | |
return (self._pos, self._pos + 1) | |
def start(self): | |
return self._pos | |
def end(self): | |
return self._pos + 1 | |
def length(self): | |
return 1 | |
def rhs(self): | |
return self._leaf | |
def dot(self): | |
return 0 | |
def is_complete(self): | |
return True | |
def is_incomplete(self): | |
return False | |
def nextsym(self): | |
return None | |
def token(self): | |
return self._token | |
def categ(self): | |
return self._token.categ() | |
def leaf(self): | |
return self._leaf | |
class BinaryCombinatorRule(AbstractChartRule): | |
""" | |
Class implementing application of a binary combinator to a chart. | |
Takes the directed combinator to apply. | |
""" | |
NUMEDGES = 2 | |
def __init__(self, combinator): | |
self._combinator = combinator | |
# Apply a combinator | |
def apply(self, chart, grammar, left_edge, right_edge): | |
# The left & right edges must be touching. | |
if not (left_edge.end() == right_edge.start()): | |
return | |
# Check if the two edges are permitted to combine. | |
# If so, generate the corresponding edge. | |
if self._combinator.can_combine(left_edge.categ(), right_edge.categ()): | |
for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): | |
new_edge = CCGEdge( | |
span=(left_edge.start(), right_edge.end()), | |
categ=res, | |
rule=self._combinator, | |
) | |
if chart.insert(new_edge, (left_edge, right_edge)): | |
yield new_edge | |
# The representation of the combinator (for printing derivations) | |
def __str__(self): | |
return "%s" % self._combinator | |
# Type-raising must be handled slightly differently to the other rules, as the | |
# resulting rules only span a single edge, rather than both edges. | |
class ForwardTypeRaiseRule(AbstractChartRule): | |
""" | |
Class for applying forward type raising | |
""" | |
NUMEDGES = 2 | |
def __init__(self): | |
self._combinator = ForwardT | |
def apply(self, chart, grammar, left_edge, right_edge): | |
if not (left_edge.end() == right_edge.start()): | |
return | |
for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): | |
new_edge = CCGEdge(span=left_edge.span(), categ=res, rule=self._combinator) | |
if chart.insert(new_edge, (left_edge,)): | |
yield new_edge | |
def __str__(self): | |
return "%s" % self._combinator | |
class BackwardTypeRaiseRule(AbstractChartRule): | |
""" | |
Class for applying backward type raising. | |
""" | |
NUMEDGES = 2 | |
def __init__(self): | |
self._combinator = BackwardT | |
def apply(self, chart, grammar, left_edge, right_edge): | |
if not (left_edge.end() == right_edge.start()): | |
return | |
for res in self._combinator.combine(left_edge.categ(), right_edge.categ()): | |
new_edge = CCGEdge(span=right_edge.span(), categ=res, rule=self._combinator) | |
if chart.insert(new_edge, (right_edge,)): | |
yield new_edge | |
def __str__(self): | |
return "%s" % self._combinator | |
# Common sets of combinators used for English derivations. | |
ApplicationRuleSet = [ | |
BinaryCombinatorRule(ForwardApplication), | |
BinaryCombinatorRule(BackwardApplication), | |
] | |
CompositionRuleSet = [ | |
BinaryCombinatorRule(ForwardComposition), | |
BinaryCombinatorRule(BackwardComposition), | |
BinaryCombinatorRule(BackwardBx), | |
] | |
SubstitutionRuleSet = [ | |
BinaryCombinatorRule(ForwardSubstitution), | |
BinaryCombinatorRule(BackwardSx), | |
] | |
TypeRaiseRuleSet = [ForwardTypeRaiseRule(), BackwardTypeRaiseRule()] | |
# The standard English rule set. | |
DefaultRuleSet = ( | |
ApplicationRuleSet + CompositionRuleSet + SubstitutionRuleSet + TypeRaiseRuleSet | |
) | |
class CCGChartParser(ParserI): | |
""" | |
Chart parser for CCGs. | |
Based largely on the ChartParser class from NLTK. | |
""" | |
def __init__(self, lexicon, rules, trace=0): | |
self._lexicon = lexicon | |
self._rules = rules | |
self._trace = trace | |
def lexicon(self): | |
return self._lexicon | |
# Implements the CYK algorithm | |
def parse(self, tokens): | |
tokens = list(tokens) | |
chart = CCGChart(list(tokens)) | |
lex = self._lexicon | |
# Initialize leaf edges. | |
for index in range(chart.num_leaves()): | |
for token in lex.categories(chart.leaf(index)): | |
new_edge = CCGLeafEdge(index, token, chart.leaf(index)) | |
chart.insert(new_edge, ()) | |
# Select a span for the new edges | |
for span in range(2, chart.num_leaves() + 1): | |
for start in range(0, chart.num_leaves() - span + 1): | |
# Try all possible pairs of edges that could generate | |
# an edge for that span | |
for part in range(1, span): | |
lstart = start | |
mid = start + part | |
rend = start + span | |
for left in chart.select(span=(lstart, mid)): | |
for right in chart.select(span=(mid, rend)): | |
# Generate all possible combinations of the two edges | |
for rule in self._rules: | |
edges_added_by_rule = 0 | |
for newedge in rule.apply(chart, lex, left, right): | |
edges_added_by_rule += 1 | |
# Output the resulting parses | |
return chart.parses(lex.start()) | |
class CCGChart(Chart): | |
def __init__(self, tokens): | |
Chart.__init__(self, tokens) | |
# Constructs the trees for a given parse. Unfortnunately, the parse trees need to be | |
# constructed slightly differently to those in the default Chart class, so it has to | |
# be reimplemented | |
def _trees(self, edge, complete, memo, tree_class): | |
assert complete, "CCGChart cannot build incomplete trees" | |
if edge in memo: | |
return memo[edge] | |
if isinstance(edge, CCGLeafEdge): | |
word = tree_class(edge.token(), [self._tokens[edge.start()]]) | |
leaf = tree_class((edge.token(), "Leaf"), [word]) | |
memo[edge] = [leaf] | |
return [leaf] | |
memo[edge] = [] | |
trees = [] | |
for cpl in self.child_pointer_lists(edge): | |
child_choices = [self._trees(cp, complete, memo, tree_class) for cp in cpl] | |
for children in itertools.product(*child_choices): | |
lhs = ( | |
Token( | |
self._tokens[edge.start() : edge.end()], | |
edge.lhs(), | |
compute_semantics(children, edge), | |
), | |
str(edge.rule()), | |
) | |
trees.append(tree_class(lhs, children)) | |
memo[edge] = trees | |
return trees | |
def compute_semantics(children, edge): | |
if children[0].label()[0].semantics() is None: | |
return None | |
if len(children) == 2: | |
if isinstance(edge.rule(), BackwardCombinator): | |
children = [children[1], children[0]] | |
combinator = edge.rule()._combinator | |
function = children[0].label()[0].semantics() | |
argument = children[1].label()[0].semantics() | |
if isinstance(combinator, UndirectedFunctionApplication): | |
return compute_function_semantics(function, argument) | |
elif isinstance(combinator, UndirectedComposition): | |
return compute_composition_semantics(function, argument) | |
elif isinstance(combinator, UndirectedSubstitution): | |
return compute_substitution_semantics(function, argument) | |
else: | |
raise AssertionError("Unsupported combinator '" + combinator + "'") | |
else: | |
return compute_type_raised_semantics(children[0].label()[0].semantics()) | |
# -------- | |
# Displaying derivations | |
# -------- | |
def printCCGDerivation(tree): | |
# Get the leaves and initial categories | |
leafcats = tree.pos() | |
leafstr = "" | |
catstr = "" | |
# Construct a string with both the leaf word and corresponding | |
# category aligned. | |
for (leaf, cat) in leafcats: | |
str_cat = "%s" % cat | |
nextlen = 2 + max(len(leaf), len(str_cat)) | |
lcatlen = (nextlen - len(str_cat)) // 2 | |
rcatlen = lcatlen + (nextlen - len(str_cat)) % 2 | |
catstr += " " * lcatlen + str_cat + " " * rcatlen | |
lleaflen = (nextlen - len(leaf)) // 2 | |
rleaflen = lleaflen + (nextlen - len(leaf)) % 2 | |
leafstr += " " * lleaflen + leaf + " " * rleaflen | |
print(leafstr.rstrip()) | |
print(catstr.rstrip()) | |
# Display the derivation steps | |
printCCGTree(0, tree) | |
# Prints the sequence of derivation steps. | |
def printCCGTree(lwidth, tree): | |
rwidth = lwidth | |
# Is a leaf (word). | |
# Increment the span by the space occupied by the leaf. | |
if not isinstance(tree, Tree): | |
return 2 + lwidth + len(tree) | |
# Find the width of the current derivation step | |
for child in tree: | |
rwidth = max(rwidth, printCCGTree(rwidth, child)) | |
# Is a leaf node. | |
# Don't print anything, but account for the space occupied. | |
if not isinstance(tree.label(), tuple): | |
return max( | |
rwidth, 2 + lwidth + len("%s" % tree.label()), 2 + lwidth + len(tree[0]) | |
) | |
(token, op) = tree.label() | |
if op == "Leaf": | |
return rwidth | |
# Pad to the left with spaces, followed by a sequence of '-' | |
# and the derivation rule. | |
print(lwidth * " " + (rwidth - lwidth) * "-" + "%s" % op) | |
# Print the resulting category on a new line. | |
str_res = "%s" % (token.categ()) | |
if token.semantics() is not None: | |
str_res += " {" + str(token.semantics()) + "}" | |
respadlen = (rwidth - lwidth - len(str_res)) // 2 + lwidth | |
print(respadlen * " " + str_res) | |
return rwidth | |
### Demonstration code | |
# Construct the lexicon | |
lex = fromstring( | |
""" | |
:- S, NP, N, VP # Primitive categories, S is the target primitive | |
Det :: NP/N # Family of words | |
Pro :: NP | |
TV :: VP/NP | |
Modal :: (S\\NP)/VP # Backslashes need to be escaped | |
I => Pro # Word -> Category mapping | |
you => Pro | |
the => Det | |
# Variables have the special keyword 'var' | |
# '.' prevents permutation | |
# ',' prevents composition | |
and => var\\.,var/.,var | |
which => (N\\N)/(S/NP) | |
will => Modal # Categories can be either explicit, or families. | |
might => Modal | |
cook => TV | |
eat => TV | |
mushrooms => N | |
parsnips => N | |
bacon => N | |
""" | |
) | |
def demo(): | |
parser = CCGChartParser(lex, DefaultRuleSet) | |
for parse in parser.parse("I might cook and eat the bacon".split()): | |
printCCGDerivation(parse) | |
if __name__ == "__main__": | |
demo() | |