Spaces:
Sleeping
Sleeping
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import os.path as osp | |
| import tempfile | |
| import unittest | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from mmengine.structures import InstanceData | |
| from mmocr.structures import TextDetDataSample | |
| from mmocr.utils import bbox2poly | |
| from mmocr.visualization import TextDetLocalVisualizer | |
| class TestTextDetLocalVisualizer(unittest.TestCase): | |
| def setUp(self): | |
| h, w = 12, 10 | |
| self.image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8') | |
| # gt_instances | |
| data_sample = TextDetDataSample() | |
| gt_instances_data = dict( | |
| bboxes=self._rand_bboxes(5, h, w), | |
| polygons=self._rand_polys(5, h, w), | |
| labels=torch.zeros(5, )) | |
| gt_instances = InstanceData(**gt_instances_data) | |
| data_sample.gt_instances = gt_instances | |
| pred_instances_data = dict( | |
| bboxes=self._rand_bboxes(5, h, w), | |
| polygons=self._rand_polys(5, h, w), | |
| labels=torch.zeros(5, ), | |
| scores=torch.rand((5, ))) | |
| pred_instances = InstanceData(**pred_instances_data) | |
| data_sample.pred_instances = pred_instances | |
| self.data_sample = data_sample | |
| def test_text_det_local_visualizer(self): | |
| for with_poly in [True, False]: | |
| for with_bbox in [True, False]: | |
| vis_cfg = dict(with_poly=with_poly, with_bbox=with_bbox) | |
| self._test_add_datasample(vis_cfg=vis_cfg) | |
| def _rand_bboxes(num_boxes, h, w): | |
| cx, cy, bw, bh = torch.rand(num_boxes, 4).T | |
| tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w).unsqueeze(0) | |
| tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h).unsqueeze(0) | |
| br_x = ((cx * w) + (w * bw / 2)).clamp(0, w).unsqueeze(0) | |
| br_y = ((cy * h) + (h * bh / 2)).clamp(0, h).unsqueeze(0) | |
| bboxes = torch.cat([tl_x, tl_y, br_x, br_y], dim=0).T | |
| return bboxes | |
| def _rand_polys(self, num_bboxes, h, w): | |
| bboxes = self._rand_bboxes(num_bboxes, h, w) | |
| bboxes = bboxes.tolist() | |
| polys = [bbox2poly(bbox) for bbox in bboxes] | |
| return polys | |
| def _test_add_datasample(self, vis_cfg): | |
| image = self.image | |
| h, w, c = image.shape | |
| det_local_visualizer = TextDetLocalVisualizer(**vis_cfg) | |
| det_local_visualizer.add_datasample('image', image, self.data_sample) | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| # test out | |
| out_file = osp.join(tmp_dir, 'out_file.jpg') | |
| det_local_visualizer.add_datasample( | |
| 'image', | |
| image, | |
| self.data_sample, | |
| out_file=out_file, | |
| draw_gt=False, | |
| draw_pred=False) | |
| self._assert_image_and_shape(out_file, (h, w, c)) | |
| det_local_visualizer.add_datasample( | |
| 'image', image, self.data_sample, out_file=out_file) | |
| self._assert_image_and_shape(out_file, (h, w * 2, c)) | |
| det_local_visualizer.add_datasample( | |
| 'image', | |
| image, | |
| self.data_sample, | |
| draw_gt=False, | |
| out_file=out_file) | |
| self._assert_image_and_shape(out_file, (h, w, c)) | |
| det_local_visualizer.add_datasample( | |
| 'image', | |
| image, | |
| self.data_sample, | |
| draw_pred=False, | |
| out_file=out_file) | |
| self._assert_image_and_shape(out_file, (h, w, c)) | |
| det_local_visualizer.add_datasample( | |
| 'image', image, None, out_file=out_file) | |
| self._assert_image_and_shape(out_file, (h, w, c)) | |
| def _assert_image_and_shape(self, out_file, out_shape): | |
| self.assertTrue(osp.exists(out_file)) | |
| drawn_img = cv2.imread(out_file) | |
| self.assertTrue(drawn_img.shape == out_shape) | |