|
import keras |
|
from keras.layers import TorchModuleWrapper |
|
import numpy as np |
|
import cv2 |
|
import torch |
|
from scipy.ndimage.filters import gaussian_filter |
|
import math |
|
import os |
|
import numpy as np |
|
from skimage.measure import label |
|
import util as util |
|
|
|
|
|
class ISLSignPos(keras.Model): |
|
def __init__(self,pt_body_model,pt_hand_model): |
|
super().__init__() |
|
self.pt_body = TorchModuleWrapper(pt_body_model) |
|
self.pt_body.trainable=False |
|
self.pt_hand = TorchModuleWrapper(pt_hand_model) |
|
self.pt_hand.trainable=False |
|
self.njoint_body = 26 |
|
self.npaf_body = 52 |
|
|
|
def call(self, oriImg): |
|
candidate, subset = self.bodypos(oriImg.cpu().numpy()) |
|
hands_list = util.handDetect(candidate, subset, oriImg.cpu().numpy()) |
|
all_hand_peaks = [] |
|
for x, y, w, is_left in hands_list: |
|
peaks = self.handpos(oriImg.cpu().numpy()[y:y+w, x:x+w, :]) |
|
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x) |
|
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y) |
|
all_hand_peaks.append(peaks) |
|
return (candidate, subset,all_hand_peaks) |
|
|
|
def bodypos(self, oriImg): |
|
model_type = 'body25' |
|
scale_search = [0.5] |
|
boxsize = 368 |
|
stride = 8 |
|
padValue = 128 |
|
thre1 = 0.1 |
|
thre2 = 0.05 |
|
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] |
|
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], self.njoint_body)) |
|
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], self.npaf_body)) |
|
|
|
for m in range(len(multiplier)): |
|
scale = multiplier[m] |
|
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) |
|
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) |
|
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 |
|
im = np.ascontiguousarray(im) |
|
|
|
data = torch.from_numpy(im).float() |
|
if torch.cuda.is_available(): |
|
data = data.cuda() |
|
with torch.no_grad(): |
|
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.pt_body(data) |
|
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() |
|
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() |
|
|
|
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) |
|
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) |
|
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] |
|
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) |
|
|
|
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) |
|
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) |
|
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] |
|
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) |
|
|
|
heatmap_avg += heatmap_avg + heatmap / len(multiplier) |
|
paf_avg += + paf / len(multiplier) |
|
|
|
all_peaks = [] |
|
peak_counter = 0 |
|
|
|
for part in range(self.njoint_body-1): |
|
map_ori = heatmap_avg[:, :, part] |
|
one_heatmap = gaussian_filter(map_ori, sigma=3) |
|
|
|
map_left = np.zeros(one_heatmap.shape) |
|
map_left[1:, :] = one_heatmap[:-1, :] |
|
map_right = np.zeros(one_heatmap.shape) |
|
map_right[:-1, :] = one_heatmap[1:, :] |
|
map_up = np.zeros(one_heatmap.shape) |
|
map_up[:, 1:] = one_heatmap[:, :-1] |
|
map_down = np.zeros(one_heatmap.shape) |
|
map_down[:, :-1] = one_heatmap[:, 1:] |
|
|
|
peaks_binary = np.logical_and.reduce( |
|
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) |
|
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) |
|
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] |
|
peak_id = range(peak_counter, peak_counter + len(peaks)) |
|
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] |
|
|
|
all_peaks.append(peaks_with_score_and_id) |
|
peak_counter += len(peaks) |
|
|
|
if model_type=='body25': |
|
|
|
limbSeq = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],\ |
|
[10,11],[8,12],[12,13],[13,14],[0,15],[0,16],[15,17],[16,18],\ |
|
[11,24],[11,22],[14,21],[14,19],[22,23],[19,20]] |
|
|
|
mapIdx = [[30, 31],[14, 15],[16, 17],[18, 19],[22, 23],[24, 25],[26, 27],[0, 1],[6, 7],\ |
|
[2, 3],[4, 5], [8, 9],[10, 11],[12, 13],[32, 33],[34, 35],[36,37],[38,39],\ |
|
[50,51],[46,47],[44,45],[40,41],[48,49],[42,43]] |
|
else: |
|
|
|
limbSeq = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], \ |
|
[9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], \ |
|
[0, 15], [15, 17], [2, 16], [5, 17]] |
|
|
|
mapIdx = [[12, 13], [20, 21], [14, 15], [16, 17], [22, 23], [24, 25], [0, 1], [2, 3], \ |
|
[4, 5], [6, 7], [8, 9], [10, 11], [28, 29], [30, 31], [34, 35], [32, 33], \ |
|
[36, 37], [18, 19], [26, 27]] |
|
|
|
connection_all = [] |
|
special_k = [] |
|
mid_num = 10 |
|
|
|
for k in range(len(mapIdx)): |
|
score_mid = paf_avg[:, :, mapIdx[k]] |
|
candA = all_peaks[limbSeq[k][0]] |
|
candB = all_peaks[limbSeq[k][1]] |
|
|
|
nA = len(candA) |
|
nB = len(candB) |
|
indexA, indexB = limbSeq[k] |
|
if (nA != 0 and nB != 0): |
|
connection_candidate = [] |
|
for i in range(nA): |
|
for j in range(nB): |
|
vec = np.subtract(candB[j][:2], candA[i][:2]) |
|
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) |
|
norm = max(0.001, norm) |
|
vec = np.divide(vec, norm) |
|
|
|
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ |
|
np.linspace(candA[i][1], candB[j][1], num=mid_num))) |
|
|
|
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ |
|
for I in range(len(startend))]) |
|
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ |
|
for I in range(len(startend))]) |
|
|
|
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) |
|
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( |
|
0.5 * oriImg.shape[0] / norm - 1, 0) |
|
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) |
|
criterion2 = score_with_dist_prior > 0 |
|
if criterion1 and criterion2: |
|
connection_candidate.append( |
|
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) |
|
|
|
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) |
|
connection = np.zeros((0, 5)) |
|
for c in range(len(connection_candidate)): |
|
i, j, s = connection_candidate[c][0:3] |
|
if (i not in connection[:, 3] and j not in connection[:, 4]): |
|
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) |
|
if (len(connection) >= min(nA, nB)): |
|
break |
|
|
|
connection_all.append(connection) |
|
else: |
|
special_k.append(k) |
|
connection_all.append([]) |
|
|
|
|
|
|
|
subset = -1 * np.ones((0, self.njoint_body+1)) |
|
candidate = np.array([item for sublist in all_peaks for item in sublist]) |
|
|
|
for k in range(len(mapIdx)): |
|
if k not in special_k: |
|
partAs = connection_all[k][:, 0] |
|
partBs = connection_all[k][:, 1] |
|
indexA, indexB = np.array(limbSeq[k]) |
|
|
|
for i in range(len(connection_all[k])): |
|
found = 0 |
|
subset_idx = [-1, -1] |
|
for j in range(len(subset)): |
|
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: |
|
subset_idx[found] = j |
|
found += 1 |
|
|
|
if found == 1: |
|
j = subset_idx[0] |
|
if subset[j][indexB] != partBs[i]: |
|
subset[j][indexB] = partBs[i] |
|
subset[j][-1] += 1 |
|
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] |
|
elif found == 2: |
|
j1, j2 = subset_idx |
|
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] |
|
if len(np.nonzero(membership == 2)[0]) == 0: |
|
subset[j1][:-2] += (subset[j2][:-2] + 1) |
|
subset[j1][-2:] += subset[j2][-2:] |
|
subset[j1][-2] += connection_all[k][i][2] |
|
subset = np.delete(subset, j2, 0) |
|
else: |
|
subset[j1][indexB] = partBs[i] |
|
subset[j1][-1] += 1 |
|
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] |
|
|
|
|
|
elif not found and k < self.njoint_body-2: |
|
row = -1 * np.ones(self.njoint_body+1) |
|
row[indexA] = partAs[i] |
|
row[indexB] = partBs[i] |
|
row[-1] = 2 |
|
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] |
|
subset = np.vstack([subset, row]) |
|
|
|
deleteIdx = [] |
|
for i in range(len(subset)): |
|
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: |
|
deleteIdx.append(i) |
|
subset = np.delete(subset, deleteIdx, axis=0) |
|
|
|
|
|
|
|
return candidate, subset |
|
|
|
def handpos(self, oriImg): |
|
scale_search = [0.5, 1.0, 1.5, 2.0] |
|
|
|
boxsize = 368 |
|
stride = 8 |
|
padValue = 128 |
|
thre = 0.05 |
|
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] |
|
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22)) |
|
|
|
|
|
for m in range(len(multiplier)): |
|
scale = multiplier[m] |
|
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) |
|
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) |
|
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 |
|
im = np.ascontiguousarray(im) |
|
|
|
data = torch.from_numpy(im).float() |
|
if torch.cuda.is_available(): |
|
data = data.cuda() |
|
|
|
with torch.no_grad(): |
|
output = self.pt_hand(data).cpu().numpy() |
|
|
|
|
|
|
|
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) |
|
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) |
|
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] |
|
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) |
|
|
|
heatmap_avg += heatmap / len(multiplier) |
|
|
|
all_peaks = [] |
|
for part in range(21): |
|
map_ori = heatmap_avg[:, :, part] |
|
one_heatmap = gaussian_filter(map_ori, sigma=3) |
|
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) |
|
|
|
if np.sum(binary) == 0: |
|
all_peaks.append([0, 0]) |
|
continue |
|
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim) |
|
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1 |
|
label_img[label_img != max_index] = 0 |
|
map_ori[label_img == 0] = 0 |
|
|
|
y, x = util.npmax(map_ori) |
|
all_peaks.append([x, y]) |
|
return np.array(all_peaks) |
|
|
|
class ISLSignPosTranslator(keras.Model): |
|
|
|
def __init__(self,body_model,hand_model, translation_model): |
|
super().__init__() |
|
self.pt_body = TorchModuleWrapper(body_model) |
|
self.pt_body.trainable=False |
|
self.pt_hand = TorchModuleWrapper(hand_model) |
|
self.pt_hand.trainable=False |
|
|
|
self.njoint_body = 26 |
|
self.npaf_body = 52 |
|
self.model_type='body25' |
|
self.translation_layer=translation_model |
|
|
|
def call(self, window): |
|
window_size=20 |
|
window_features=[] |
|
blank_frame=np.zeros((1,156)) |
|
for idx,frame in enumerate(window.cpu()): |
|
|
|
|
|
candidate, subset = self.bodypos(frame.cpu().numpy()) |
|
hands_list = util.handDetect(candidate, subset, frame.cpu().numpy()) |
|
all_hand_peaks = [] |
|
for x, y, w, is_left in hands_list: |
|
peaks = self.handpos(frame.cpu().numpy()[y:y+w, x:x+w, :]) |
|
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x) |
|
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y) |
|
all_hand_peaks.append(peaks) |
|
|
|
(bodypose_circles,bodypose_sticks,)=util.get_bodypose(candidate, subset, self.model_type) |
|
(handpose_edges,handpose_peaks)=util.get_handpose(all_hand_peaks,) |
|
|
|
feature=self.populate_features(bodypose_circles,handpose_peaks) |
|
window_features.append(feature) |
|
|
|
if len(window_features)<window_size: |
|
for _ in range(0,(window_size-window_features.shape[0])): |
|
window_features.append(blank_frame) |
|
|
|
|
|
|
|
|
|
|
|
|
|
return self.translation_layer(np.array(window_features).reshape(1,20,156)) |
|
|
|
|
|
def frame_to_window(self,frame): |
|
""" |
|
Converts a single frame to a rolling window array with zero padding. |
|
|
|
Args: |
|
frame: A numpy array representing a video frame. |
|
window_size: The size of the rolling window (default: 20). |
|
window (optional): An existing window array to add the frame to |
|
(useful for maintaining rolling window state). |
|
|
|
Returns: |
|
A numpy array representing the rolling window with the added frame. |
|
""" |
|
|
|
|
|
self.window[:-1] = self.window[1:] |
|
|
|
|
|
self.window[-1] = frame |
|
|
|
def populate_features(self,bodypose_circles,handpose_peaks): |
|
|
|
|
|
|
|
|
|
|
|
feature=[] |
|
for idx in range(15): |
|
if(idx<len(bodypose_circles)): |
|
feature.append(bodypose_circles[idx][0]) |
|
else: |
|
feature.append(0) |
|
|
|
for idx in range(15): |
|
if(idx<len(bodypose_circles)): |
|
feature.append(bodypose_circles[idx][1]) |
|
else: |
|
feature.append(0) |
|
|
|
for hand_idx in range(2): |
|
for idx in range(21): |
|
if(idx<len(handpose_peaks[hand_idx])): |
|
feature.append(float(handpose_peaks[hand_idx][idx][0])) |
|
else: |
|
feature.append(0) |
|
|
|
for idx in range(21): |
|
if(idx<len(handpose_peaks[hand_idx])): |
|
feature.append(float(handpose_peaks[hand_idx][idx][1])) |
|
else: |
|
feature.append(0) |
|
|
|
for idx in range(21): |
|
if(idx<len(handpose_peaks[hand_idx])): |
|
feature.append(float(handpose_peaks[hand_idx][idx][2])) |
|
else: |
|
feature.append(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X=np.array(feature) |
|
|
|
|
|
|
|
return X |
|
|
|
def bodypos(self, oriImg): |
|
model_type = 'body25' |
|
scale_search = [0.5] |
|
boxsize = 368 |
|
stride = 8 |
|
padValue = 128 |
|
thre1 = 0.1 |
|
thre2 = 0.05 |
|
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] |
|
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], self.njoint_body)) |
|
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], self.npaf_body)) |
|
|
|
for m in range(len(multiplier)): |
|
scale = multiplier[m] |
|
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) |
|
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) |
|
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 |
|
im = np.ascontiguousarray(im) |
|
|
|
data = torch.from_numpy(im).float() |
|
if torch.cuda.is_available(): |
|
data = data.cuda() |
|
with torch.no_grad(): |
|
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.pt_body(data) |
|
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() |
|
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() |
|
|
|
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) |
|
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) |
|
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] |
|
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) |
|
|
|
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) |
|
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) |
|
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] |
|
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) |
|
|
|
heatmap_avg += heatmap_avg + heatmap / len(multiplier) |
|
paf_avg += + paf / len(multiplier) |
|
|
|
all_peaks = [] |
|
peak_counter = 0 |
|
|
|
for part in range(self.njoint_body-1): |
|
map_ori = heatmap_avg[:, :, part] |
|
one_heatmap = gaussian_filter(map_ori, sigma=3) |
|
|
|
map_left = np.zeros(one_heatmap.shape) |
|
map_left[1:, :] = one_heatmap[:-1, :] |
|
map_right = np.zeros(one_heatmap.shape) |
|
map_right[:-1, :] = one_heatmap[1:, :] |
|
map_up = np.zeros(one_heatmap.shape) |
|
map_up[:, 1:] = one_heatmap[:, :-1] |
|
map_down = np.zeros(one_heatmap.shape) |
|
map_down[:, :-1] = one_heatmap[:, 1:] |
|
|
|
peaks_binary = np.logical_and.reduce( |
|
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) |
|
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) |
|
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] |
|
peak_id = range(peak_counter, peak_counter + len(peaks)) |
|
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] |
|
|
|
all_peaks.append(peaks_with_score_and_id) |
|
peak_counter += len(peaks) |
|
|
|
if model_type=='body25': |
|
|
|
limbSeq = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],\ |
|
[10,11],[8,12],[12,13],[13,14],[0,15],[0,16],[15,17],[16,18],\ |
|
[11,24],[11,22],[14,21],[14,19],[22,23],[19,20]] |
|
|
|
mapIdx = [[30, 31],[14, 15],[16, 17],[18, 19],[22, 23],[24, 25],[26, 27],[0, 1],[6, 7],\ |
|
[2, 3],[4, 5], [8, 9],[10, 11],[12, 13],[32, 33],[34, 35],[36,37],[38,39],\ |
|
[50,51],[46,47],[44,45],[40,41],[48,49],[42,43]] |
|
else: |
|
|
|
limbSeq = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], \ |
|
[9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], \ |
|
[0, 15], [15, 17], [2, 16], [5, 17]] |
|
|
|
mapIdx = [[12, 13], [20, 21], [14, 15], [16, 17], [22, 23], [24, 25], [0, 1], [2, 3], \ |
|
[4, 5], [6, 7], [8, 9], [10, 11], [28, 29], [30, 31], [34, 35], [32, 33], \ |
|
[36, 37], [18, 19], [26, 27]] |
|
|
|
connection_all = [] |
|
special_k = [] |
|
mid_num = 10 |
|
|
|
for k in range(len(mapIdx)): |
|
score_mid = paf_avg[:, :, mapIdx[k]] |
|
candA = all_peaks[limbSeq[k][0]] |
|
candB = all_peaks[limbSeq[k][1]] |
|
|
|
nA = len(candA) |
|
nB = len(candB) |
|
indexA, indexB = limbSeq[k] |
|
if (nA != 0 and nB != 0): |
|
connection_candidate = [] |
|
for i in range(nA): |
|
for j in range(nB): |
|
vec = np.subtract(candB[j][:2], candA[i][:2]) |
|
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) |
|
norm = max(0.001, norm) |
|
vec = np.divide(vec, norm) |
|
|
|
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ |
|
np.linspace(candA[i][1], candB[j][1], num=mid_num))) |
|
|
|
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ |
|
for I in range(len(startend))]) |
|
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ |
|
for I in range(len(startend))]) |
|
|
|
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) |
|
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( |
|
0.5 * oriImg.shape[0] / norm - 1, 0) |
|
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) |
|
criterion2 = score_with_dist_prior > 0 |
|
if criterion1 and criterion2: |
|
connection_candidate.append( |
|
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) |
|
|
|
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) |
|
connection = np.zeros((0, 5)) |
|
for c in range(len(connection_candidate)): |
|
i, j, s = connection_candidate[c][0:3] |
|
if (i not in connection[:, 3] and j not in connection[:, 4]): |
|
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) |
|
if (len(connection) >= min(nA, nB)): |
|
break |
|
|
|
connection_all.append(connection) |
|
else: |
|
special_k.append(k) |
|
connection_all.append([]) |
|
|
|
|
|
|
|
subset = -1 * np.ones((0, self.njoint_body+1)) |
|
candidate = np.array([item for sublist in all_peaks for item in sublist]) |
|
|
|
for k in range(len(mapIdx)): |
|
if k not in special_k: |
|
partAs = connection_all[k][:, 0] |
|
partBs = connection_all[k][:, 1] |
|
indexA, indexB = np.array(limbSeq[k]) |
|
|
|
for i in range(len(connection_all[k])): |
|
found = 0 |
|
subset_idx = [-1, -1] |
|
for j in range(len(subset)): |
|
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: |
|
subset_idx[found] = j |
|
found += 1 |
|
|
|
if found == 1: |
|
j = subset_idx[0] |
|
if subset[j][indexB] != partBs[i]: |
|
subset[j][indexB] = partBs[i] |
|
subset[j][-1] += 1 |
|
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] |
|
elif found == 2: |
|
j1, j2 = subset_idx |
|
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] |
|
if len(np.nonzero(membership == 2)[0]) == 0: |
|
subset[j1][:-2] += (subset[j2][:-2] + 1) |
|
subset[j1][-2:] += subset[j2][-2:] |
|
subset[j1][-2] += connection_all[k][i][2] |
|
subset = np.delete(subset, j2, 0) |
|
else: |
|
subset[j1][indexB] = partBs[i] |
|
subset[j1][-1] += 1 |
|
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] |
|
|
|
|
|
elif not found and k < self.njoint_body-2: |
|
row = -1 * np.ones(self.njoint_body+1) |
|
row[indexA] = partAs[i] |
|
row[indexB] = partBs[i] |
|
row[-1] = 2 |
|
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] |
|
subset = np.vstack([subset, row]) |
|
|
|
deleteIdx = [] |
|
for i in range(len(subset)): |
|
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: |
|
deleteIdx.append(i) |
|
subset = np.delete(subset, deleteIdx, axis=0) |
|
|
|
|
|
|
|
return candidate, subset |
|
|
|
def handpos(self, oriImg): |
|
scale_search = [0.5, 1.0, 1.5, 2.0] |
|
|
|
boxsize = 368 |
|
stride = 8 |
|
padValue = 128 |
|
thre = 0.05 |
|
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] |
|
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22)) |
|
|
|
|
|
for m in range(len(multiplier)): |
|
scale = multiplier[m] |
|
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) |
|
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) |
|
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 |
|
im = np.ascontiguousarray(im) |
|
|
|
data = torch.from_numpy(im).float() |
|
if torch.cuda.is_available(): |
|
data = data.cuda() |
|
|
|
with torch.no_grad(): |
|
output = self.pt_hand(data).cpu().numpy() |
|
|
|
|
|
|
|
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) |
|
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) |
|
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] |
|
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) |
|
|
|
heatmap_avg += heatmap / len(multiplier) |
|
|
|
all_peaks = [] |
|
for part in range(21): |
|
map_ori = heatmap_avg[:, :, part] |
|
one_heatmap = gaussian_filter(map_ori, sigma=3) |
|
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) |
|
|
|
if np.sum(binary) == 0: |
|
all_peaks.append([0, 0]) |
|
continue |
|
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim) |
|
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1 |
|
label_img[label_img != max_index] = 0 |
|
map_ori[label_img == 0] = 0 |
|
|
|
y, x = util.npmax(map_ori) |
|
all_peaks.append([x, y]) |
|
return np.array(all_peaks) |