import keras from keras.layers import TorchModuleWrapper import numpy as np import cv2 import torch from scipy.ndimage.filters import gaussian_filter import math import os import numpy as np from skimage.measure import label import util as util class ISLSignPos(keras.Model): def __init__(self,pt_body_model,pt_hand_model): super().__init__() self.pt_body = TorchModuleWrapper(pt_body_model) self.pt_body.trainable=False self.pt_hand = TorchModuleWrapper(pt_hand_model) self.pt_hand.trainable=False self.njoint_body = 26 self.npaf_body = 52 def call(self, oriImg): candidate, subset = self.bodypos(oriImg.cpu().numpy()) hands_list = util.handDetect(candidate, subset, oriImg.cpu().numpy()) all_hand_peaks = [] for x, y, w, is_left in hands_list: peaks = self.handpos(oriImg.cpu().numpy()[y:y+w, x:x+w, :]) peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x) peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y) all_hand_peaks.append(peaks) return (candidate, subset,all_hand_peaks) def bodypos(self, oriImg): model_type = 'body25' scale_search = [0.5] boxsize = 368 stride = 8 padValue = 128 thre1 = 0.1 thre2 = 0.05 multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], self.njoint_body)) paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], self.npaf_body)) for m in range(len(multiplier)): scale = multiplier[m] imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 im = np.ascontiguousarray(im) data = torch.from_numpy(im).float() if torch.cuda.is_available(): data = data.cuda() with torch.no_grad(): Mconv7_stage6_L1, Mconv7_stage6_L2 = self.pt_body(data) Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy() Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy() heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg += heatmap_avg + heatmap / len(multiplier) paf_avg += + paf / len(multiplier) all_peaks = [] peak_counter = 0 for part in range(self.njoint_body-1): map_ori = heatmap_avg[:, :, part] one_heatmap = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(one_heatmap.shape) map_left[1:, :] = one_heatmap[:-1, :] map_right = np.zeros(one_heatmap.shape) map_right[:-1, :] = one_heatmap[1:, :] map_up = np.zeros(one_heatmap.shape) map_up[:, 1:] = one_heatmap[:, :-1] map_down = np.zeros(one_heatmap.shape) map_down[:, :-1] = one_heatmap[:, 1:] peaks_binary = np.logical_and.reduce( (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] peak_id = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) if model_type=='body25': # find connection in the specified sequence, center 29 is in the position 15 limbSeq = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],\ [10,11],[8,12],[12,13],[13,14],[0,15],[0,16],[15,17],[16,18],\ [11,24],[11,22],[14,21],[14,19],[22,23],[19,20]] # the middle joints heatmap correpondence mapIdx = [[30, 31],[14, 15],[16, 17],[18, 19],[22, 23],[24, 25],[26, 27],[0, 1],[6, 7],\ [2, 3],[4, 5], [8, 9],[10, 11],[12, 13],[32, 33],[34, 35],[36,37],[38,39],\ [50,51],[46,47],[44,45],[40,41],[48,49],[42,43]] else: # find connection in the specified sequence, center 29 is in the position 15 limbSeq = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], \ [9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], \ [0, 15], [15, 17], [2, 16], [5, 17]] # the middle joints heatmap correpondence mapIdx = [[12, 13], [20, 21], [14, 15], [16, 17], [22, 23], [24, 25], [0, 1], [2, 3], \ [4, 5], [6, 7], [8, 9], [10, 11], [28, 29], [30, 31], [34, 35], [32, 33], \ [36, 37], [18, 19], [26, 27]] connection_all = [] special_k = [] mid_num = 10 for k in range(len(mapIdx)): score_mid = paf_avg[:, :, mapIdx[k]] candA = all_peaks[limbSeq[k][0]] candB = all_peaks[limbSeq[k][1]] nA = len(candA) nB = len(candB) indexA, indexB = limbSeq[k] if (nA != 0 and nB != 0): connection_candidate = [] for i in range(nA): for j in range(nB): vec = np.subtract(candB[j][:2], candA[i][:2]) norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) norm = max(0.001, norm) vec = np.divide(vec, norm) startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ np.linspace(candA[i][1], candB[j][1], num=mid_num))) vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ for I in range(len(startend))]) vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ for I in range(len(startend))]) score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( 0.5 * oriImg.shape[0] / norm - 1, 0) criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) criterion2 = score_with_dist_prior > 0 if criterion1 and criterion2: connection_candidate.append( [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) connection = np.zeros((0, 5)) for c in range(len(connection_candidate)): i, j, s = connection_candidate[c][0:3] if (i not in connection[:, 3] and j not in connection[:, 4]): connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) if (len(connection) >= min(nA, nB)): break connection_all.append(connection) else: special_k.append(k) connection_all.append([]) # last number in each row is the total parts number of that person # the second last number in each row is the score of the overall configuration subset = -1 * np.ones((0, self.njoint_body+1)) candidate = np.array([item for sublist in all_peaks for item in sublist]) for k in range(len(mapIdx)): if k not in special_k: partAs = connection_all[k][:, 0] partBs = connection_all[k][:, 1] indexA, indexB = np.array(limbSeq[k]) for i in range(len(connection_all[k])): # = 1:size(temp,1) found = 0 subset_idx = [-1, -1] for j in range(len(subset)): # 1:size(subset,1): if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: subset_idx[found] = j found += 1 if found == 1: j = subset_idx[0] if subset[j][indexB] != partBs[i]: subset[j][indexB] = partBs[i] subset[j][-1] += 1 subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them j1, j2 = subset_idx membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] if len(np.nonzero(membership == 2)[0]) == 0: # merge subset[j1][:-2] += (subset[j2][:-2] + 1) subset[j1][-2:] += subset[j2][-2:] subset[j1][-2] += connection_all[k][i][2] subset = np.delete(subset, j2, 0) else: # as like found == 1 subset[j1][indexB] = partBs[i] subset[j1][-1] += 1 subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset elif not found and k < self.njoint_body-2: row = -1 * np.ones(self.njoint_body+1) row[indexA] = partAs[i] row[indexB] = partBs[i] row[-1] = 2 row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] subset = np.vstack([subset, row]) # delete some rows of subset which has few parts occur deleteIdx = [] for i in range(len(subset)): if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: deleteIdx.append(i) subset = np.delete(subset, deleteIdx, axis=0) # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts # candidate: x, y, score, id return candidate, subset def handpos(self, oriImg): scale_search = [0.5, 1.0, 1.5, 2.0] # scale_search = [0.5] boxsize = 368 stride = 8 padValue = 128 thre = 0.05 multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22)) # paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) for m in range(len(multiplier)): scale = multiplier[m] imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 im = np.ascontiguousarray(im) data = torch.from_numpy(im).float() if torch.cuda.is_available(): data = data.cuda() # data = data.permute([2, 0, 1]).unsqueeze(0).float() with torch.no_grad(): output = self.pt_hand(data).cpu().numpy() # output = self.model(data).numpy()q # extract outputs, resize, and remove padding heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg += heatmap / len(multiplier) all_peaks = [] for part in range(21): map_ori = heatmap_avg[:, :, part] one_heatmap = gaussian_filter(map_ori, sigma=3) binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) # 全部小于阈值 if np.sum(binary) == 0: all_peaks.append([0, 0]) continue label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim) max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1 label_img[label_img != max_index] = 0 map_ori[label_img == 0] = 0 y, x = util.npmax(map_ori) all_peaks.append([x, y]) return np.array(all_peaks) class ISLSignPosTranslator(keras.Model): def __init__(self,body_model,hand_model, translation_model): super().__init__() self.pt_body = TorchModuleWrapper(body_model) self.pt_body.trainable=False self.pt_hand = TorchModuleWrapper(hand_model) self.pt_hand.trainable=False self.njoint_body = 26 self.npaf_body = 52 self.model_type='body25' self.translation_layer=translation_model def call(self, window): window_size=20 window_features=[] blank_frame=np.zeros((1,156)) for idx,frame in enumerate(window.cpu()): # frame=frame.cpu().numpy()[:, :, ::-1] candidate, subset = self.bodypos(frame.cpu().numpy()) hands_list = util.handDetect(candidate, subset, frame.cpu().numpy()) all_hand_peaks = [] for x, y, w, is_left in hands_list: peaks = self.handpos(frame.cpu().numpy()[y:y+w, x:x+w, :]) peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x) peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y) all_hand_peaks.append(peaks) (bodypose_circles,bodypose_sticks,)=util.get_bodypose(candidate, subset, self.model_type) (handpose_edges,handpose_peaks)=util.get_handpose(all_hand_peaks,) feature=self.populate_features(bodypose_circles,handpose_peaks) window_features.append(feature) if len(window_features)= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] peak_id = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) if model_type=='body25': # find connection in the specified sequence, center 29 is in the position 15 limbSeq = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],\ [10,11],[8,12],[12,13],[13,14],[0,15],[0,16],[15,17],[16,18],\ [11,24],[11,22],[14,21],[14,19],[22,23],[19,20]] # the middle joints heatmap correpondence mapIdx = [[30, 31],[14, 15],[16, 17],[18, 19],[22, 23],[24, 25],[26, 27],[0, 1],[6, 7],\ [2, 3],[4, 5], [8, 9],[10, 11],[12, 13],[32, 33],[34, 35],[36,37],[38,39],\ [50,51],[46,47],[44,45],[40,41],[48,49],[42,43]] else: # find connection in the specified sequence, center 29 is in the position 15 limbSeq = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], \ [9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], \ [0, 15], [15, 17], [2, 16], [5, 17]] # the middle joints heatmap correpondence mapIdx = [[12, 13], [20, 21], [14, 15], [16, 17], [22, 23], [24, 25], [0, 1], [2, 3], \ [4, 5], [6, 7], [8, 9], [10, 11], [28, 29], [30, 31], [34, 35], [32, 33], \ [36, 37], [18, 19], [26, 27]] connection_all = [] special_k = [] mid_num = 10 for k in range(len(mapIdx)): score_mid = paf_avg[:, :, mapIdx[k]] candA = all_peaks[limbSeq[k][0]] candB = all_peaks[limbSeq[k][1]] nA = len(candA) nB = len(candB) indexA, indexB = limbSeq[k] if (nA != 0 and nB != 0): connection_candidate = [] for i in range(nA): for j in range(nB): vec = np.subtract(candB[j][:2], candA[i][:2]) norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) norm = max(0.001, norm) vec = np.divide(vec, norm) startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ np.linspace(candA[i][1], candB[j][1], num=mid_num))) vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ for I in range(len(startend))]) vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ for I in range(len(startend))]) score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( 0.5 * oriImg.shape[0] / norm - 1, 0) criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) criterion2 = score_with_dist_prior > 0 if criterion1 and criterion2: connection_candidate.append( [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) connection = np.zeros((0, 5)) for c in range(len(connection_candidate)): i, j, s = connection_candidate[c][0:3] if (i not in connection[:, 3] and j not in connection[:, 4]): connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) if (len(connection) >= min(nA, nB)): break connection_all.append(connection) else: special_k.append(k) connection_all.append([]) # last number in each row is the total parts number of that person # the second last number in each row is the score of the overall configuration subset = -1 * np.ones((0, self.njoint_body+1)) candidate = np.array([item for sublist in all_peaks for item in sublist]) for k in range(len(mapIdx)): if k not in special_k: partAs = connection_all[k][:, 0] partBs = connection_all[k][:, 1] indexA, indexB = np.array(limbSeq[k]) for i in range(len(connection_all[k])): # = 1:size(temp,1) found = 0 subset_idx = [-1, -1] for j in range(len(subset)): # 1:size(subset,1): if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: subset_idx[found] = j found += 1 if found == 1: j = subset_idx[0] if subset[j][indexB] != partBs[i]: subset[j][indexB] = partBs[i] subset[j][-1] += 1 subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them j1, j2 = subset_idx membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] if len(np.nonzero(membership == 2)[0]) == 0: # merge subset[j1][:-2] += (subset[j2][:-2] + 1) subset[j1][-2:] += subset[j2][-2:] subset[j1][-2] += connection_all[k][i][2] subset = np.delete(subset, j2, 0) else: # as like found == 1 subset[j1][indexB] = partBs[i] subset[j1][-1] += 1 subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset elif not found and k < self.njoint_body-2: row = -1 * np.ones(self.njoint_body+1) row[indexA] = partAs[i] row[indexB] = partBs[i] row[-1] = 2 row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] subset = np.vstack([subset, row]) # delete some rows of subset which has few parts occur deleteIdx = [] for i in range(len(subset)): if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: deleteIdx.append(i) subset = np.delete(subset, deleteIdx, axis=0) # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts # candidate: x, y, score, id return candidate, subset def handpos(self, oriImg): scale_search = [0.5, 1.0, 1.5, 2.0] # scale_search = [0.5] boxsize = 368 stride = 8 padValue = 128 thre = 0.05 multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22)) # paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) for m in range(len(multiplier)): scale = multiplier[m] imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue) im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 im = np.ascontiguousarray(im) data = torch.from_numpy(im).float() if torch.cuda.is_available(): data = data.cuda() # data = data.permute([2, 0, 1]).unsqueeze(0).float() with torch.no_grad(): output = self.pt_hand(data).cpu().numpy() # output = self.model(data).numpy()q # extract outputs, resize, and remove padding heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg += heatmap / len(multiplier) all_peaks = [] for part in range(21): map_ori = heatmap_avg[:, :, part] one_heatmap = gaussian_filter(map_ori, sigma=3) binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8) # 全部小于阈值 if np.sum(binary) == 0: all_peaks.append([0, 0]) continue label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim) max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1 label_img[label_img != max_index] = 0 map_ori[label_img == 0] = 0 y, x = util.npmax(map_ori) all_peaks.append([x, y]) return np.array(all_peaks)