vision_work / app.py
sundea's picture
Update app.py
1f53a42
raw
history blame
10.2 kB
import argparse
import numpy as np
import torch
import gradio
import gradio as gr
def object_detection(image):
image = image.convert("RGB")
image = image.resize((640, 640))
image = np.array(image).transpose((2, 0, 1))
image = np.expand_dims(image, axis=0).astype(np.float32)
# Run the model
outputs = session.run([output_name], {input_name: image})
# Postprocess the prediction
prediction = outputs[0][0]
return prediction
with gr.Blocks() as demo:
with gr.Row():
image_input=gr.Image()
image_output=gr.Image()
image_text =gr.Text()
image_button=gr.Button('start')
image_button.click(object_detection,inputs=image_input,outputs=[image_output,image_text])
demo.close()
demo.launch(server_port=9090)import os
import sys
import argparse
import time
from pathlib import Path
import pandas as pd
import gradio as gr
import cv2
from PIL import Image
import torch
import torch.backends.cudnn as cudnn
from numpy import random
BASE_DIR = "/home/user/app"
os.chdir(BASE_DIR)
os.makedirs(f"{BASE_DIR}/input",exist_ok=True)
os.system(f"git clone https://github.com/WongKinYiu/yolov7.git {BASE_DIR}/yolov7")
sys.path.append(f'{BASE_DIR}/yolov7')
def detect(opt, save_img=False):
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
bbox = {}
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
old_img_w = old_img_h = imgsz
old_img_b = 1
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Warmup
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
old_img_b = img.shape[0]
old_img_h = img.shape[2]
old_img_w = img.shape[3]
for i in range(3):
model(img, augment=opt.augment)[0]
# Inference
t1 = time_synchronized()
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
pred = model(img, augment=opt.augment)[0]
t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t3 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# print(f"BOXES ---->>>> {det[:, :4]}")
bbox[f"{txt_path.split('/')[4]}"]=(det[:, :4]).numpy()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
# Print time (inference + NMS)
print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
# Stream results
# if view_img:
# cv2.imshow(str(p), im0)
# cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
# Image.fromarray(im0).show()
cv2.imwrite(save_path, im0)
print(f" The image with the result is saved in: {save_path}")
# else: # 'video' or 'stream'
# if vid_path != save_path: # new video
# vid_path = save_path
# if isinstance(vid_writer, cv2.VideoWriter):
# vid_writer.release() # release previous video writer
# if vid_cap: # video
# fps = vid_cap.get(cv2.CAP_PROP_FPS)
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# else: # stream
# fps, w, h = 30, im0.shape[1], im0.shape[0]
# save_path += '.mp4'
# vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
# vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
#print(f"Results saved to {save_dir}{s}")
print(f'Done. ({time.time() - t0:.3f}s)')
return bbox,save_path
class options:
def __init__(self, weights, source, img_size=640, conf_thres=0.1, iou_thres=0.45, device='',
view_img=False, save_txt=False, save_conf=False, nosave=False, classes=None,
agnostic_nms=False, augment=False, update=False, project='runs/detect', name='exp',
exist_ok=False, no_trace=False):
self.weights=weights
self.source=source
self.img_size=img_size
self.conf_thres=conf_thres
self.iou_thres=iou_thres
self.device=device
self.view_img=view_img
self.save_txt=save_txt
self.save_conf=save_conf
self.nosave=nosave
self.classes=classes
self.agnostic_nms=agnostic_nms
self.augment=augment
self.update=update
self.project=project
self.name=name
self.exist_ok=exist_ok
self.no_trace=no_trace
def get_output(image):
image.save(f"{BASE_DIR}/input/image.jpg")
source = f"{BASE_DIR}/input"
opt = options(weights='logo_detection.pt',source=source)
bbox = None
with torch.no_grad():
# if opt.update: # update all models (to fix SourceChangeWarning)
# for opt.weights in ['yolov7.pt']:
# bbox,output_path = detect(opt)
# strip_optimizer(opt.weights)
# else:
bbox,output_path = detect(opt)
if os.path.exists(output_path):
return Image.open(output_path)
else:
return image
gr.Interface(fn=get_output,
inputs=gr.Image(type = "pil", label="Your image"),
outputs="image"
).launch(debug=True)