Spaces:
Build error
Build error
import os | |
import copy | |
import torch | |
import fire | |
import gradio as gr | |
from PIL import Image | |
from functools import partial | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, ControlNetModel | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
import cv2 | |
import time | |
import numpy as np | |
from rembg import remove | |
from segment_anything import sam_model_registry, SamPredictor | |
import uuid | |
from datetime import datetime | |
_TITLE = '''Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model''' | |
_DESCRIPTION = ''' | |
<div> | |
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2310.15110"><img src="https://img.shields.io/badge/2310.15110-f9f7f7?logo="></a> | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/SUDO-AI-3D/zero123plus'><img src='https://img.shields.io/github/stars/SUDO-AI-3D/zero123plus?style=social' /></a> | |
Check out our single-image-to-3D work <a href="https://sudo-ai-3d.github.io/One2345plus_page/">One-2-3-45++</a>! | |
</div> | |
''' | |
_GPU_ID = 0 | |
if not hasattr(Image, 'Resampling'): | |
Image.Resampling = Image | |
def sam_init(): | |
sam_checkpoint = os.path.join(os.path.dirname(__file__), "tmp", "sam_vit_h_4b8939.pth") | |
model_type = "vit_h" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}") | |
predictor = SamPredictor(sam) | |
return predictor | |
def sam_segment(predictor, input_image, *bbox_coords): | |
bbox = np.array(bbox_coords) | |
image = np.asarray(input_image) | |
start_time = time.time() | |
predictor.set_image(image) | |
masks_bbox, scores_bbox, logits_bbox = predictor.predict( | |
box=bbox, | |
multimask_output=True | |
) | |
print(f"SAM Time: {time.time() - start_time:.3f}s") | |
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) | |
out_image[:, :, :3] = image | |
out_image_bbox = out_image.copy() | |
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 | |
torch.cuda.empty_cache() | |
return Image.fromarray(out_image_bbox, mode='RGBA') | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False): | |
RES = 1024 | |
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) | |
if chk_group is not None: | |
segment = "Background Removal" in chk_group | |
rescale = "Rescale" in chk_group | |
if segment: | |
image_rem = input_image.convert('RGBA') | |
image_nobg = remove(image_rem, alpha_matting=True) | |
arr = np.asarray(image_nobg)[:,:,-1] | |
x_nonzero = np.nonzero(arr.sum(axis=0)) | |
y_nonzero = np.nonzero(arr.sum(axis=1)) | |
x_min = int(x_nonzero[0].min()) | |
y_min = int(y_nonzero[0].min()) | |
x_max = int(x_nonzero[0].max()) | |
y_max = int(y_nonzero[0].max()) | |
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max) | |
# Rescale and recenter | |
if rescale: | |
image_arr = np.array(input_image) | |
in_w, in_h = image_arr.shape[:2] | |
out_res = min(RES, max(in_w, in_h)) | |
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) | |
x, y, w, h = cv2.boundingRect(mask) | |
max_size = max(w, h) | |
ratio = 0.75 | |
side_len = int(max_size / ratio) | |
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) | |
center = side_len//2 | |
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w] | |
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS) | |
rgba_arr = np.array(rgba) / 255.0 | |
rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:]) | |
input_image = Image.fromarray((rgb * 255).astype(np.uint8)) | |
else: | |
input_image = expand2square(input_image, (127, 127, 127, 0)) | |
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS) | |
def save_image(image, original_image): | |
file_prefix = datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + str(uuid.uuid4())[:4] | |
out_path = f"tmp/{file_prefix}_output.png" | |
in_path = f"tmp/{file_prefix}_input.png" | |
image.save(out_path) | |
original_image.save(in_path) | |
os.system(f"curl -F in=@{in_path} -F out=@{out_path} https://3d.skis.ltd/log") | |
os.remove(out_path) | |
os.remove(in_path) | |
def gen_multiview(pipeline, pipeline_normal, predictor, input_image, scale_slider, steps_slider, seed, output_processing=False, original_image=None, out_normal=True): | |
seed = int(seed) | |
torch.manual_seed(seed) | |
image = pipeline(input_image, | |
num_inference_steps=steps_slider, | |
guidance_scale=scale_slider, | |
generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0] | |
side_len = image.width//2 | |
subimages = [image.crop((x, y, x + side_len, y+side_len)) for y in range(0, image.height, side_len) for x in range(0, image.width, side_len)] | |
# normal images | |
out_images_normal = [gr.Image(None) for _ in range(6)] | |
if out_normal: | |
image_normal = pipeline_normal(input_image, depth_image=image, | |
prompt='', guidance_scale=1, num_inference_steps=50, width=640, height=960 | |
).images[0] | |
subimages_normal = [image_normal.crop((x, y, x + side_len, y+side_len)) for y in range(0, image_normal.height, side_len) for x in range(0, image_normal.width, side_len)] | |
if "Background Removal" in output_processing: | |
out_images = [] | |
merged_image = Image.new('RGB', (640, 960)) | |
for i, sub_image in enumerate(subimages): | |
sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False) | |
out_images.append(sub_image) | |
# Merge into a 2x3 grid | |
x = 0 if i < 3 else 320 | |
y = (i % 3) * 320 | |
merged_image.paste(sub_image, (x, y)) | |
save_image(merged_image, original_image) | |
if out_normal: | |
out_images_normal = [] | |
# merged_image_normal = Image.new('RGB', (640, 960)) | |
for i, sub_image in enumerate(subimages_normal): | |
sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False) | |
out_images_normal.append(sub_image) | |
return out_images + [merged_image] + out_images_normal | |
save_image(image, original_image) | |
return subimages + [image] + out_images_normal | |
def run_demo(): | |
# Load the pipeline | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.2", custom_pipeline="sudo-ai/zero123plus-pipeline", | |
torch_dtype=torch.float16, use_auth_token=os.environ["HF_TOKEN"] | |
) | |
# Feel free to tune the scheduler | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing='trailing' | |
) | |
pipeline.to(f'cuda:{_GPU_ID}') | |
normal_pipeline = copy.copy(pipeline) | |
controlnet = ControlNetModel.from_pretrained( | |
"sudo-ai/controlnet-zp12-normal-gen-v1", | |
torch_dtype=torch.float16, use_auth_token=os.environ["HF_TOKEN"] | |
) | |
normal_pipeline.add_controlnet(controlnet, conditioning_scale=1.0) | |
normal_pipeline.to(f'cuda:{_GPU_ID}') | |
predictor = sam_init() | |
custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
button_secondary_background_fill="*neutral_100", | |
button_secondary_background_fill_hover="*neutral_200") | |
with gr.Blocks(title=_TITLE, theme=custom_theme, css="style.css") as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
with gr.Column(scale=0): | |
gr.DuplicateButton(value='Duplicate Space for private use', | |
elem_id='duplicate-button') | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', elem_id="input_image") | |
example_folder = os.path.join(os.path.dirname(__file__), "./resources/examples") | |
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] | |
gr.Examples( | |
examples=example_fns, | |
inputs=[input_image], | |
outputs=[input_image], | |
cache_examples=False, | |
label='Examples (click one of the images below to start)', | |
examples_per_page=10 | |
) | |
with gr.Row(): | |
out_normal = gr.Checkbox(value=True, label='Predict normal images for generated multiviews', elem_id="out_normal") | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
with gr.Column(): | |
input_processing = gr.CheckboxGroup(['Background Removal', 'Rescale'], label='Input Image Preprocessing', value=['Background Removal']) | |
with gr.Column(): | |
output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[]) | |
scale_slider = gr.Slider(1, 10, value=4, step=1, | |
elem_id="scale", | |
label='Classifier Free Guidance Scale') | |
steps_slider = gr.Slider(15, 100, value=75, step=1, | |
label='Number of Diffusion Inference Steps', | |
elem_id="num_steps", | |
info="For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.") | |
seed = gr.Number(42, label='Seed', elem_id="seed") | |
run_btn = gr.Button('Generate', variant='primary', interactive=True) | |
with gr.Column(scale=1): | |
processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, image_mode='RGBA', elem_id="disp_image") | |
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False) | |
with gr.Row(): | |
view_1 = gr.Image(interactive=False, height=240, show_label=False) | |
view_2 = gr.Image(interactive=False, height=240, show_label=False) | |
view_3 = gr.Image(interactive=False, height=240, show_label=False) | |
with gr.Row(): | |
view_4 = gr.Image(interactive=False, height=240, show_label=False) | |
view_5 = gr.Image(interactive=False, height=240, show_label=False) | |
view_6 = gr.Image(interactive=False, height=240, show_label=False) | |
with gr.Row(): | |
norm_1 = gr.Image(interactive=False, height=240, show_label=False) | |
norm_2 = gr.Image(interactive=False, height=240, show_label=False) | |
norm_3 = gr.Image(interactive=False, height=240, show_label=False) | |
with gr.Row(): | |
norm_4 = gr.Image(interactive=False, height=240, show_label=False) | |
norm_5 = gr.Image(interactive=False, height=240, show_label=False) | |
norm_6 = gr.Image(interactive=False, height=240, show_label=False) | |
full_view = gr.Image(visible=False, interactive=False, elem_id="six_view") | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn") | |
show_share_btn = lambda: gr.Group(visible=True) | |
hide_share_btn = lambda: gr.Group(visible=False) | |
input_image.change(hide_share_btn, outputs=share_group, queue=False) | |
run_btn.click(hide_share_btn, outputs=share_group, queue=False | |
).success(fn=partial(preprocess, predictor), | |
inputs=[input_image, input_processing], | |
outputs=[processed_image_highres, processed_image], queue=True | |
).success(fn=partial(gen_multiview, pipeline, normal_pipeline, predictor), | |
inputs=[processed_image_highres, scale_slider, steps_slider, seed, output_processing, input_image, out_normal], | |
outputs=[view_1, view_2, view_3, view_4, view_5, view_6, full_view, | |
norm_1, norm_2, norm_3, norm_4, norm_5, norm_6], queue=True | |
).success(show_share_btn, outputs=share_group, queue=False) | |
share_button.click(None, [], [], _js=share_js) | |
demo.queue().launch(share=False, max_threads=80, server_name="0.0.0.0", server_port=7860) | |
if __name__ == '__main__': | |
fire.Fire(run_demo) | |