rag_api / app.py
subhrajit-mohanty's picture
Update app.py
58f0de3 verified
from fastapi import FastAPI, HTTPException, Request, UploadFile, File, Depends, status
from fastapi.responses import StreamingResponse
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Any, AsyncGenerator
import asyncio
import json
import uuid
from datetime import datetime
import os
from contextlib import asynccontextmanager
import tempfile
import shutil
import random
import hashlib
import secrets
from functools import wraps
# Third-party imports
from openai import OpenAI, AsyncOpenAI
from qdrant_client import AsyncQdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct, Filter, FieldCondition, MatchValue
from sentence_transformers import SentenceTransformer
import torch
import asyncio
from concurrent.futures import ThreadPoolExecutor
import PyPDF2
# Models
OPENROUTER_MODELS = ["deepseek/deepseek-chat-v3-0324:free", "deepseek/deepseek-r1-0528:free", "qwen/qwen3-235b-a22b:free", "google/gemini-2.0-flash-exp:free"]
GROQ_MODELS = ["llama-3.3-70b-versatile", "openai/gpt-oss-120b"]
# Models for OpenAI-compatible API
class Message(BaseModel):
role: str = Field(..., description="The role of the message author")
content: str = Field(..., description="The content of the message")
class ChatCompletionRequest(BaseModel):
model: str = Field(default="auto", description="Model to use (auto for dynamic selection)")
messages: List[Message] = Field(..., description="List of messages")
max_tokens: Optional[int] = Field(default=1024, description="Maximum tokens to generate")
temperature: Optional[float] = Field(default=0.7, description="Temperature for sampling")
stream: Optional[bool] = Field(default=False, description="Whether to stream responses")
top_p: Optional[float] = Field(default=1.0, description="Top-p sampling parameter")
provider: Optional[str] = Field(default="random", description="Provider to use (random, openrouter, groq)")
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Dict[str, Any]]
usage: Optional[Dict[str, int]] = None
class ChatCompletionChunk(BaseModel):
id: str
object: str = "chat.completion.chunk"
created: int
model: str
choices: List[Dict[str, Any]]
class DocumentUploadRequest(BaseModel):
metadata: Optional[Dict[str, Any]] = None
class DocumentSearchRequest(BaseModel):
query: str = Field(..., description="Search query")
limit: int = Field(default=5, description="Maximum number of results")
min_score: float = Field(default=0.1, description="Minimum similarity score")
# Configuration
class Config:
# Provider API Keys
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
# Vector DB Configuration
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
COLLECTION_NAME = os.getenv("COLLECTION_NAME", "documents")
# Embedding Configuration
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
TOP_K = int(os.getenv("TOP_K", "10"))
SIMILARITY_THRESHOLD = float(os.getenv("SIMILARITY_THRESHOLD", "0.1"))
DEVICE = os.getenv("DEVICE", "cuda" if torch.cuda.is_available() else "cpu")
# Security Configuration
API_KEYS = os.getenv("API_KEYS", "").split(",") if os.getenv("API_KEYS") else []
MASTER_KEY = os.getenv("MASTER_KEY", "")
ENABLE_SECURITY = os.getenv("ENABLE_SECURITY", "true").lower() == "true"
RATE_LIMIT_PER_MINUTE = int(os.getenv("RATE_LIMIT_PER_MINUTE", "60"))
@classmethod
def generate_api_key(cls) -> str:
"""Generate a new API key"""
return f"sk-{secrets.token_urlsafe(32)}"
@classmethod
def validate_api_key(cls, api_key: str) -> bool:
"""Validate API key"""
if not cls.ENABLE_SECURITY:
return True
if not api_key:
return False
# Check master key
if cls.MASTER_KEY and api_key == cls.MASTER_KEY:
return True
# Check configured API keys
if cls.API_KEYS and api_key in cls.API_KEYS:
return True
return False
# Security Models
class APIKeyRequest(BaseModel):
description: Optional[str] = Field(None, description="Description for the API key")
class APIKeyResponse(BaseModel):
api_key: str
description: Optional[str] = None
created_at: str
status: str = "active"
class SecurityInfo(BaseModel):
security_enabled: bool
rate_limit_per_minute: int
has_master_key: bool
configured_keys_count: int
# Rate Limiting
class RateLimiter:
def __init__(self):
self.requests = {}
self.blocked_ips = set()
def is_allowed(self, identifier: str, limit_per_minute: int = Config.RATE_LIMIT_PER_MINUTE) -> bool:
"""Check if request is allowed based on rate limit"""
if not Config.ENABLE_SECURITY:
return True
if identifier in self.blocked_ips:
return False
now = datetime.now()
minute_key = now.strftime("%Y-%m-%d %H:%M")
if identifier not in self.requests:
self.requests[identifier] = {}
if minute_key not in self.requests[identifier]:
self.requests[identifier][minute_key] = 0
# Clean old entries (keep only last 2 minutes)
keys_to_remove = []
for key in self.requests[identifier]:
try:
key_time = datetime.strptime(key, "%Y-%m-%d %H:%M")
if (now - key_time).total_seconds() > 120: # 2 minutes
keys_to_remove.append(key)
except ValueError:
keys_to_remove.append(key)
for key in keys_to_remove:
del self.requests[identifier][key]
# Check current minute limit
current_requests = self.requests[identifier].get(minute_key, 0)
if current_requests >= limit_per_minute:
return False
self.requests[identifier][minute_key] = current_requests + 1
return True
def block_ip(self, ip: str):
"""Block an IP address"""
self.blocked_ips.add(ip)
def unblock_ip(self, ip: str):
"""Unblock an IP address"""
self.blocked_ips.discard(ip)
# Security Dependencies
security = HTTPBearer(auto_error=False)
rate_limiter = RateLimiter()
async def verify_api_key(
request: Request,
credentials: Optional[HTTPAuthorizationCredentials] = Depends(security)
) -> str:
"""Verify API key from Authorization header"""
if not Config.ENABLE_SECURITY:
return "security_disabled"
# Get client IP
client_ip = request.client.host
# Check rate limit
if not rate_limiter.is_allowed(client_ip):
raise HTTPException(
status_code=status.HTTP_429_TOO_MANY_REQUESTS,
detail="Rate limit exceeded"
)
# Check API key
if not credentials:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="API key required. Please provide a valid API key in the Authorization header as 'Bearer <your-api-key>'"
)
api_key = credentials.credentials
if not Config.validate_api_key(api_key):
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key"
)
return api_key
async def verify_master_key(
request: Request,
credentials: Optional[HTTPAuthorizationCredentials] = Depends(security)
) -> str:
"""Verify master key for admin operations"""
if not Config.ENABLE_SECURITY:
return "security_disabled"
if not credentials:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Master key required for admin operations"
)
api_key = credentials.credentials
if not Config.MASTER_KEY or api_key != Config.MASTER_KEY:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail="Invalid master key"
)
return api_key
class DynamicOpenAIService:
"""Service for dynamic OpenAI provider selection"""
def __init__(self):
self.validate_api_keys()
def validate_api_keys(self):
"""Validate that at least one API key is available"""
if not Config.OPENROUTER_API_KEY and not Config.GROQ_API_KEY:
raise ValueError("At least one API key (OPENROUTER_API_KEY or GROQ_API_KEY) must be provided")
if not Config.OPENROUTER_API_KEY:
print("Warning: OPENROUTER_API_KEY not found, will only use Groq")
if not Config.GROQ_API_KEY:
print("Warning: GROQ_API_KEY not found, will only use OpenRouter")
def get_client(self, provider="random"):
"""Get OpenAI client for specified provider"""
available_providers = []
if Config.OPENROUTER_API_KEY:
available_providers.append("openrouter")
if Config.GROQ_API_KEY:
available_providers.append("groq")
if not available_providers:
raise ValueError("No API keys available for any provider")
if provider == "random":
provider = random.choice(available_providers)
elif provider not in available_providers:
# Fallback to available provider
provider = available_providers[0]
print(f"Requested provider not available, using {provider}")
print(f"Selected provider: {provider}")
if provider == "openrouter":
return (
OpenAI(api_key=Config.OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1"),
OPENROUTER_MODELS,
provider
)
else: # groq
return (
OpenAI(api_key=Config.GROQ_API_KEY, base_url="https://api.groq.com/openai/v1"),
GROQ_MODELS,
provider
)
async def get_async_client(self, provider="random"):
"""Get AsyncOpenAI client for specified provider"""
available_providers = []
if Config.OPENROUTER_API_KEY:
available_providers.append("openrouter")
if Config.GROQ_API_KEY:
available_providers.append("groq")
if not available_providers:
raise ValueError("No API keys available for any provider")
if provider == "random":
provider = random.choice(available_providers)
elif provider not in available_providers:
# Fallback to available provider
provider = available_providers[0]
print(f"Requested provider not available, using {provider}")
print(f"Selected provider: {provider}")
if provider == "openrouter":
return (
AsyncOpenAI(api_key=Config.OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1"),
OPENROUTER_MODELS,
provider
)
else: # groq
return (
AsyncOpenAI(api_key=Config.GROQ_API_KEY, base_url="https://api.groq.com/openai/v1"),
GROQ_MODELS,
provider
)
def get_text_response(self, prompt, provider="random", model=None):
"""Get text response from AI"""
client, models, selected_provider = self.get_client(provider)
if not model or model == "auto":
model = random.choice(models)
print(f"Using model: {model}")
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=1024,
temperature=0.7
)
return response.choices[0].message.content
def get_text_response_streaming(self, prompt, provider="random", model=None):
"""Get streaming text response from AI"""
client, models, selected_provider = self.get_client(provider)
if not model or model == "auto":
model = random.choice(models)
print(f"Using model: {model}")
stream = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
max_tokens=1024,
temperature=0.7,
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
yield chunk.choices[0].delta.content
class ApplicationState:
"""Application state container"""
def __init__(self):
self.openai_service = None
self.qdrant_client = None
self.embedding_service = None
self.document_manager = None
# Global state instance
app_state = ApplicationState()
class EmbeddingService:
"""Service for generating embeddings using sentence-transformers"""
def __init__(self):
self.model_name = Config.EMBEDDING_MODEL
self.device = Config.DEVICE
self.dimension = 384 # all-MiniLM-L6-v2 dimension
self.executor = ThreadPoolExecutor(max_workers=4)
# Load the model
print(f"Loading embedding model: {self.model_name}")
self.model = SentenceTransformer(self.model_name, device=self.device)
print(f"Model loaded successfully on device: {self.device}")
async def get_embedding(self, text: str) -> List[float]:
"""Generate embedding for given text"""
try:
loop = asyncio.get_event_loop()
embedding = await loop.run_in_executor(
self.executor,
self._encode_text,
text
)
return embedding.tolist()
except Exception as e:
print(f"Error generating embedding: {e}")
return [0.1] * self.dimension
def _encode_text(self, text: str):
"""Synchronous text encoding - runs in thread pool"""
return self.model.encode([text])[0]
async def get_document_embedding(self, text: str) -> List[float]:
"""Generate embedding for document text"""
return await self.get_embedding(text)
async def get_query_embedding(self, text: str) -> List[float]:
"""Generate embedding for query text"""
return await self.get_embedding(text)
async def batch_embed(self, texts: List[str]) -> List[List[float]]:
"""Generate embeddings for multiple texts efficiently"""
try:
loop = asyncio.get_event_loop()
embeddings = await loop.run_in_executor(
self.executor,
self._batch_encode_texts,
texts
)
return embeddings.tolist()
except Exception as e:
print(f"Error in batch embedding: {e}")
return [[0.1] * self.dimension for _ in texts]
def _batch_encode_texts(self, texts: List[str]):
"""Synchronous batch encoding - runs in thread pool"""
return self.model.encode(texts)
def health_check(self) -> dict:
"""Check embedding service health"""
try:
test_embedding = self.model.encode(["test"])
return {
"status": "healthy",
"model": self.model_name,
"device": self.device,
"dimension": self.dimension,
"test_embedding_shape": test_embedding.shape
}
except Exception as e:
return {
"status": "unhealthy",
"model": self.model_name,
"error": str(e)
}
class DocumentManager:
"""Enhanced document management with async support"""
def __init__(self, qdrant_client: AsyncQdrantClient, embedding_service: EmbeddingService):
self.qdrant_client = qdrant_client
self.embedding_service = embedding_service
self.collection_name = Config.COLLECTION_NAME
self.vector_size = 384
self.executor = ThreadPoolExecutor(max_workers=2)
async def _read_pdf(self, file_path: str) -> str:
"""Read text from PDF file asynchronously"""
try:
loop = asyncio.get_event_loop()
return await loop.run_in_executor(self.executor, self._sync_read_pdf, file_path)
except Exception as e:
print(f"Error reading PDF {file_path}: {e}")
return ""
def _sync_read_pdf(self, file_path: str) -> str:
"""Synchronous PDF reading"""
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text
except Exception as e:
print(f"Error reading PDF {file_path}: {e}")
return ""
def _chunk_text(self, text: str, chunk_size: int = 500, overlap: int = 50) -> List[str]:
"""Split text into chunks"""
if len(text) <= chunk_size:
return [text]
chunks = []
start = 0
while start < len(text):
end = start + chunk_size
if end < len(text):
sentence_end = text.rfind('.', start, end)
if sentence_end > start:
end = sentence_end + 1
else:
word_end = text.rfind(' ', start, end)
if word_end > start:
end = word_end
chunk = text[start:end].strip()
if chunk:
chunks.append(chunk)
start = end - overlap
return chunks
async def _ensure_collection_exists(self):
"""Ensure the collection exists, create if it doesn't"""
try:
collections = await self.qdrant_client.get_collections()
collection_names = [c.name for c in collections.collections]
if self.collection_name not in collection_names:
print(f"Creating collection '{self.collection_name}' on-demand...")
await self.qdrant_client.create_collection(
collection_name=self.collection_name,
vectors_config=VectorParams(
size=self.vector_size,
distance=Distance.COSINE
)
)
print(f"✓ Collection '{self.collection_name}' created successfully!")
except Exception as e:
print(f"Warning: Could not ensure collection exists: {e}")
async def add_document(self, file_path: str, metadata: Dict[str, Any] = None) -> str:
"""Add a PDF document to the collection"""
try:
await self._ensure_collection_exists()
# Read PDF
text = await self._read_pdf(file_path)
if not text:
print(f"Could not extract text from {file_path}")
return ""
# Create chunks
chunks = self._chunk_text(text)
if not chunks:
print(f"No chunks created from {file_path}")
return ""
# Generate document ID
document_id = str(uuid.uuid4())
# Create embeddings for all chunks
embeddings = await self.embedding_service.batch_embed(chunks)
# Create points for each chunk
points = []
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)):
payload = {
"document_id": document_id,
"file_path": file_path,
"chunk_index": i,
"content": chunk, # Use 'content' as the main field
"chunk_text": chunk, # Keep for compatibility
"total_chunks": len(chunks),
"timestamp": datetime.now().isoformat()
}
if metadata:
payload["metadata"] = metadata
point = PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload=payload
)
points.append(point)
# Insert into Qdrant
await self.qdrant_client.upsert(collection_name=self.collection_name, points=points)
print(f"✓ Added document: {file_path}")
print(f" Document ID: {document_id}")
print(f" Chunks: {len(chunks)}")
return document_id
except Exception as e:
print(f"Error adding document {file_path}: {e}")
return ""
async def search_documents(self, query: str, limit: int = 5, min_score: float = 0.1) -> List[Dict[str, Any]]:
"""Search for relevant document chunks"""
try:
await self._ensure_collection_exists()
print(f"Document Search - Query: '{query}', Limit: {limit}, Min Score: {min_score}")
# Generate query embedding
query_embedding = await self.embedding_service.get_query_embedding(query)
print(f"Document Search - Generated embedding vector of size: {len(query_embedding)}")
# Search in Qdrant
search_results = await self.qdrant_client.search(
collection_name=self.collection_name,
query_vector=query_embedding,
limit=limit,
score_threshold=min_score
)
print(f"Document Search - Qdrant returned {len(search_results)} results")
# Format results
results = []
for i, result in enumerate(search_results):
content = result.payload.get("content", result.payload.get("chunk_text", ""))
print(f"Document Search - Result {i+1}: Score={result.score:.4f}, Content preview: {content[:100]}...")
results.append({
"score": result.score,
"text": content,
"file_path": result.payload.get("file_path", ""),
"document_id": result.payload.get("document_id", ""),
"chunk_index": result.payload.get("chunk_index", 0)
})
print(f"✓ Document Search - Found {len(results)} results for query: '{query}'")
return results
except Exception as e:
print(f"Error searching: {e}")
import traceback
traceback.print_exc()
return []
async def list_documents(self) -> List[Dict[str, Any]]:
"""List all documents in the collection"""
try:
await self._ensure_collection_exists()
# Get all points
points, _ = await self.qdrant_client.scroll(
collection_name=self.collection_name,
limit=10000,
with_payload=True,
with_vectors=False
)
# Group by document_id
documents = {}
for point in points:
doc_id = point.payload.get("document_id")
if doc_id and doc_id not in documents:
documents[doc_id] = {
"document_id": doc_id,
"file_path": point.payload.get("file_path", ""),
"total_chunks": point.payload.get("total_chunks", 0),
"timestamp": point.payload.get("timestamp", ""),
"metadata": point.payload.get("metadata", {})
}
doc_list = list(documents.values())
print(f"✓ Found {len(doc_list)} documents")
return doc_list
except Exception as e:
print(f"Error listing documents: {e}")
return []
async def delete_document(self, document_id: str) -> bool:
"""Delete a document and all its chunks"""
try:
await self._ensure_collection_exists()
# Find all points for this document
points, _ = await self.qdrant_client.scroll(
collection_name=self.collection_name,
limit=10000,
with_payload=True,
with_vectors=False
)
# Collect point IDs to delete
points_to_delete = []
for point in points:
if point.payload.get("document_id") == document_id:
points_to_delete.append(point.id)
if not points_to_delete:
print(f"No document found with ID: {document_id}")
return False
# Delete points
await self.qdrant_client.delete(
collection_name=self.collection_name,
points_selector=points_to_delete
)
print(f"✓ Deleted document: {document_id} ({len(points_to_delete)} chunks)")
return True
except Exception as e:
print(f"Error deleting document: {e}")
return False
class RAGService:
"""Service for retrieval-augmented generation"""
@staticmethod
async def retrieve_relevant_chunks(query: str, top_k: int = Config.TOP_K) -> List[Dict[str, Any]]:
"""Retrieve relevant document chunks using the document manager"""
try:
if app_state.document_manager is None:
print("Error: Document manager is not initialized")
return []
# Use a lower similarity threshold for RAG to get more results
min_score = 0.1 # Lower threshold for RAG
print(f"RAG Search - Query: '{query}', Limit: {top_k}, Min Score: {min_score}")
# Use the document manager's search functionality
results = await app_state.document_manager.search_documents(
query=query,
limit=top_k,
min_score=min_score
)
print(f"RAG Search - Found {len(results)} results")
# If no results with low threshold, try even lower
if not results:
print("No results with min_score=0.1, trying with min_score=0.0")
results = await app_state.document_manager.search_documents(
query=query,
limit=top_k,
min_score=0.0
)
print(f"RAG Search - Found {len(results)} results with min_score=0.0")
return results
except Exception as e:
print(f"Error retrieving chunks: {e}")
return []
@staticmethod
def build_context_prompt(query: str, results: List[Dict[str, Any]]) -> str:
"""Build a context-aware prompt with retrieved chunks"""
if not results:
return query
# Build context parts
context_parts = []
for result in results:
context_parts.append(f"Source: {result['file_path']}\n{result['text']}")
combined_context = "\n\n---\n\n".join(context_parts)
prompt = f"""Use the following context to answer the user's question naturally and directly. Don't mention that you're using context or say "based on the context" - just provide the answer as if you know it.
Context:
{combined_context}
Question: {query}
Important: When responding to questions that use pronouns like "he," "him," "his," or any similar references, always refer to Subhrajit specifically. Any personal pronouns in questions should be understood as referring to Subhrajit.
Please ensure your answer is complete and not cut off, adjusting its length as necessary to fit within the desired context length. Always Respond it in Markdown Format."""
return prompt
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup
print("Initializing services...")
# Initialize dynamic OpenAI service
try:
app_state.openai_service = DynamicOpenAIService()
print("✓ Dynamic OpenAI service initialized")
except Exception as e:
print(f"✗ Error initializing OpenAI service: {e}")
raise e
# Initialize Qdrant client
try:
app_state.qdrant_client = AsyncQdrantClient(
url=Config.QDRANT_URL,
api_key=Config.QDRANT_API_KEY
)
print("✓ Qdrant client initialized")
except Exception as e:
print(f"✗ Error initializing Qdrant client: {e}")
raise e
# Initialize embedding service
try:
print("Loading embedding model...")
app_state.embedding_service = EmbeddingService()
print(f"✓ Embedding model loaded: {Config.EMBEDDING_MODEL}")
print(f"✓ Model device: {Config.DEVICE}")
print(f"✓ Vector dimension: {app_state.embedding_service.dimension}")
except Exception as e:
print(f"✗ Error initializing embedding service: {e}")
raise e
# Initialize document manager
try:
app_state.document_manager = DocumentManager(
qdrant_client=app_state.qdrant_client,
embedding_service=app_state.embedding_service
)
print("✓ Document manager initialized")
except Exception as e:
print(f"✗ Error initializing document manager: {e}")
raise e
print("🚀 All services initialized successfully!")
# Print security information
if Config.ENABLE_SECURITY:
print("\n🔒 Security Configuration:")
print(f" Security: ENABLED")
print(f" Rate Limit: {Config.RATE_LIMIT_PER_MINUTE} requests/minute")
print(f" Master Key: {'✓ Configured' if Config.MASTER_KEY else '✗ Not configured'}")
print(f" API Keys: {len([k for k in Config.API_KEYS if k.strip()])} configured")
if not Config.MASTER_KEY and not Config.API_KEYS:
print(" ⚠️ WARNING: No API keys configured! Set MASTER_KEY or API_KEYS environment variable.")
else:
print("\n🔓 Security: DISABLED")
print(" All endpoints are publicly accessible")
yield
# Shutdown
print("Shutting down services...")
if app_state.qdrant_client:
await app_state.qdrant_client.close()
print("✓ Qdrant client closed")
if app_state.embedding_service and hasattr(app_state.embedding_service, 'executor'):
app_state.embedding_service.executor.shutdown(wait=True)
print("✓ Embedding service executor shutdown")
if app_state.document_manager and hasattr(app_state.document_manager, 'executor'):
app_state.document_manager.executor.shutdown(wait=True)
print("✓ Document manager executor shutdown")
print("✓ Shutdown complete")
# Initialize FastAPI app
app = FastAPI(
title="Enhanced RAG API with Dynamic Provider Selection",
description="OpenAI-compatible API for RAG with dynamic provider selection (OpenRouter/Groq) and document management",
version="1.0.0",
lifespan=lifespan
)
@app.get("/")
async def root():
return {
"message": "Enhanced RAG API with Dynamic Provider Selection",
"status": "running",
"security_enabled": Config.ENABLE_SECURITY,
"version": "1.0.0"
}
@app.get("/health")
async def health_check(api_key: str = Depends(verify_api_key)):
"""Health check endpoint"""
try:
# Test Qdrant connection
if app_state.qdrant_client:
collections = await app_state.qdrant_client.get_collections()
qdrant_status = "connected"
else:
qdrant_status = "not_initialized"
except Exception as e:
qdrant_status = f"error: {str(e)}"
# Test embedding service
if app_state.embedding_service is None:
embedding_health = {"status": "not_initialized", "error": "EmbeddingService is None"}
else:
try:
embedding_health = app_state.embedding_service.health_check()
except Exception as e:
embedding_health = {"status": "error", "error": str(e)}
# Test OpenAI service
if app_state.openai_service is None:
openai_health = {"status": "not_initialized", "error": "OpenAI service is None"}
else:
try:
# Test both providers if available
test_results = {}
if Config.OPENROUTER_API_KEY:
try:
client, models, provider = app_state.openai_service.get_client("openrouter")
test_response = client.chat.completions.create(
model=models[0],
messages=[{"role": "user", "content": "test"}],
max_tokens=1
)
test_results["openrouter"] = {"status": "healthy", "model": models[0]}
except Exception as e:
test_results["openrouter"] = {"status": "error", "error": str(e)}
if Config.GROQ_API_KEY:
try:
client, models, provider = app_state.openai_service.get_client("groq")
test_response = client.chat.completions.create(
model=models[0],
messages=[{"role": "user", "content": "test"}],
max_tokens=1
)
test_results["groq"] = {"status": "healthy", "model": models[0]}
except Exception as e:
test_results["groq"] = {"status": "error", "error": str(e)}
openai_health = {"status": "healthy", "providers": test_results}
except Exception as e:
openai_health = {"status": "error", "error": str(e)}
return {
"status": "healthy" if app_state.embedding_service is not None else "unhealthy",
"openai_service": openai_health,
"qdrant": qdrant_status,
"embedding_service": embedding_health,
"document_manager": "initialized" if app_state.document_manager else "not_initialized",
"collection": Config.COLLECTION_NAME,
"embedding_model": Config.EMBEDDING_MODEL,
"available_providers": {
"openrouter": bool(Config.OPENROUTER_API_KEY),
"groq": bool(Config.GROQ_API_KEY)
}
}
@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest, api_key: str = Depends(verify_api_key)):
"""OpenAI-compatible chat completions endpoint with enhanced RAG and dynamic provider selection"""
if not app_state.openai_service:
raise HTTPException(status_code=500, detail="OpenAI service not initialized")
try:
# Get the last user message for retrieval
user_messages = [msg for msg in request.messages if msg.role == "user"]
if not user_messages:
raise HTTPException(status_code=400, detail="No user message found")
last_user_message = user_messages[-1].content
print(f"Processing query: {last_user_message[:100]}...")
# Retrieve relevant chunks using enhanced search
try:
relevant_results = await RAGService.retrieve_relevant_chunks(last_user_message)
print(f"Retrieved {len(relevant_results)} chunks")
except Exception as e:
print(f"Error in retrieval: {e}")
relevant_results = []
# Build context-aware prompt
if relevant_results:
context_prompt = RAGService.build_context_prompt(last_user_message, relevant_results)
enhanced_messages = request.messages[:-1] + [Message(role="user", content=context_prompt)]
print("Using context-enhanced prompt")
else:
enhanced_messages = request.messages
print("Using original prompt (no context)")
# Convert to OpenAI format
openai_messages = [{"role": msg.role, "content": msg.content} for msg in enhanced_messages]
print(f"Sending {len(openai_messages)} messages to OpenAI API")
if request.stream:
return StreamingResponse(
stream_chat_completion(openai_messages, request),
media_type="text/event-stream"
)
else:
return await create_chat_completion(openai_messages, request)
except HTTPException:
raise
except Exception as e:
print(f"Unexpected error in chat_completions: {e}")
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse:
"""Create a non-streaming chat completion using dynamic provider selection"""
try:
# Get async client with dynamic provider selection
client, models, selected_provider = await app_state.openai_service.get_async_client(request.provider)
# Select model
if request.model == "auto" or not request.model:
selected_model = random.choice(models)
else:
selected_model = request.model
print(f"Using provider: {selected_provider}, model: {selected_model}")
response = await client.chat.completions.create(
model=selected_model,
messages=messages,
max_tokens=request.max_tokens,
temperature=request.temperature,
top_p=request.top_p,
stream=False
)
result = ChatCompletionResponse(
id=response.id,
created=response.created,
model=f"{selected_provider}:{response.model}", # Include provider in model name
choices=[{
"index": choice.index,
"message": {
"role": choice.message.role,
"content": choice.message.content
},
"finish_reason": choice.finish_reason
} for choice in response.choices],
usage={
"prompt_tokens": response.usage.prompt_tokens,
"completion_tokens": response.usage.completion_tokens,
"total_tokens": response.usage.total_tokens
} if response.usage else None
)
return result
except Exception as e:
print(f"Error in create_chat_completion: {e}")
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}")
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]:
"""Stream chat completion responses using dynamic provider selection"""
try:
# Get async client with dynamic provider selection
client, models, selected_provider = await app_state.openai_service.get_async_client(request.provider)
# Select model
if request.model == "auto" or not request.model:
selected_model = random.choice(models)
else:
selected_model = request.model
print(f"Using provider: {selected_provider}, model: {selected_model}")
stream = await client.chat.completions.create(
model=selected_model,
messages=messages,
max_tokens=request.max_tokens,
temperature=request.temperature,
top_p=request.top_p,
stream=True
)
async for chunk in stream:
if chunk.choices and len(chunk.choices) > 0:
choice = chunk.choices[0]
if choice.delta:
chunk_response = ChatCompletionChunk(
id=chunk.id,
created=chunk.created,
model=f"{selected_provider}:{chunk.model}", # Include provider in model name
choices=[{
"index": choice.index,
"delta": {
"role": choice.delta.role if choice.delta.role else None,
"content": choice.delta.content if choice.delta.content else None
},
"finish_reason": choice.finish_reason
}]
)
yield f"data: {chunk_response.model_dump_json()}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
print(f"Error in streaming: {e}")
error_chunk = {
"error": {
"message": str(e),
"type": "internal_error"
}
}
yield f"data: {json.dumps(error_chunk)}\n\n"
# Document management endpoints
@app.post("/v1/documents/upload")
async def upload_document(
file: UploadFile = File(...),
metadata: str = None,
api_key: str = Depends(verify_api_key)
):
"""Upload a PDF document"""
try:
if not app_state.document_manager:
raise HTTPException(status_code=500, detail="Document manager not initialized")
# Validate file type
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="Only PDF files are supported")
# Parse metadata if provided
parsed_metadata = {}
if metadata:
try:
parsed_metadata = json.loads(metadata)
except json.JSONDecodeError:
raise HTTPException(status_code=400, detail="Invalid metadata JSON")
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
shutil.copyfileobj(file.file, tmp_file)
tmp_path = tmp_file.name
try:
# Add document to the collection
document_id = await app_state.document_manager.add_document(
file_path=tmp_path,
metadata={
**parsed_metadata,
"original_filename": file.filename,
"upload_timestamp": datetime.now().isoformat()
}
)
if not document_id:
raise HTTPException(status_code=500, detail="Failed to add document")
return {
"message": "Document uploaded successfully",
"document_id": document_id,
"filename": file.filename
}
finally:
# Clean up temporary file
os.unlink(tmp_path)
except HTTPException:
raise
except Exception as e:
print(f"Error uploading document: {e}")
raise HTTPException(status_code=500, detail=f"Error uploading document: {str(e)}")
@app.post("/v1/documents/search")
async def search_documents(request: DocumentSearchRequest, api_key: str = Depends(verify_api_key)):
"""Search for documents"""
try:
if not app_state.document_manager:
raise HTTPException(status_code=500, detail="Document manager not initialized")
results = await app_state.document_manager.search_documents(
query=request.query,
limit=request.limit,
min_score=request.min_score
)
return {
"query": request.query,
"results": results,
"count": len(results)
}
except Exception as e:
print(f"Error searching documents: {e}")
raise HTTPException(status_code=500, detail=f"Error searching documents: {str(e)}")
@app.get("/v1/documents/list")
async def list_documents(api_key: str = Depends(verify_api_key)):
"""List all documents"""
try:
if not app_state.document_manager:
raise HTTPException(status_code=500, detail="Document manager not initialized")
documents = await app_state.document_manager.list_documents()
return {
"documents": documents,
"count": len(documents)
}
except Exception as e:
print(f"Error listing documents: {e}")
raise HTTPException(status_code=500, detail=f"Error listing documents: {str(e)}")
@app.delete("/v1/documents/{document_id}")
async def delete_document(document_id: str, api_key: str = Depends(verify_api_key)):
"""Delete a document"""
try:
if not app_state.document_manager:
raise HTTPException(status_code=500, detail="Document manager not initialized")
success = await app_state.document_manager.delete_document(document_id)
if not success:
raise HTTPException(status_code=404, detail="Document not found")
return {"message": "Document deleted successfully", "document_id": document_id}
except HTTPException:
raise
except Exception as e:
print(f"Error deleting document: {e}")
raise HTTPException(status_code=500, detail=f"Error deleting document: {str(e)}")
# Legacy compatibility endpoints
@app.post("/v1/embeddings/add")
async def add_document_legacy(content: str, metadata: Optional[Dict] = None, api_key: str = Depends(verify_api_key)):
"""Legacy endpoint for adding documents (text content)"""
try:
if not app_state.embedding_service or not app_state.qdrant_client:
raise HTTPException(status_code=500, detail="Services not initialized")
await app_state.document_manager._ensure_collection_exists()
embedding = await app_state.embedding_service.get_document_embedding(content)
point = PointStruct(
id=str(uuid.uuid4()),
vector=embedding,
payload={
"content": content,
"metadata": metadata or {},
"timestamp": datetime.now().isoformat()
}
)
await app_state.qdrant_client.upsert(
collection_name=Config.COLLECTION_NAME,
points=[point]
)
return {"message": "Document added successfully", "id": point.id}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error adding document: {str(e)}")
@app.get("/v1/collections/info")
async def get_collection_info(api_key: str = Depends(verify_api_key)):
"""Get information about the collection"""
try:
if app_state.qdrant_client is None:
raise HTTPException(status_code=500, detail="Qdrant client is not initialized")
await app_state.document_manager._ensure_collection_exists()
collection_info = await app_state.qdrant_client.get_collection(Config.COLLECTION_NAME)
return {
"name": Config.COLLECTION_NAME,
"vectors_count": collection_info.vectors_count,
"status": collection_info.status,
"vector_size": app_state.embedding_service.dimension if app_state.embedding_service else "unknown"
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error getting collection info: {str(e)}")
# New endpoint to get available providers and models
@app.get("/v1/providers")
async def get_providers(api_key: str = Depends(verify_api_key)):
"""Get available providers and their models"""
try:
if not app_state.openai_service:
raise HTTPException(status_code=500, detail="OpenAI service not initialized")
available_providers = {}
if Config.OPENROUTER_API_KEY:
available_providers["openrouter"] = {
"status": "available",
"models": OPENROUTER_MODELS
}
else:
available_providers["openrouter"] = {
"status": "unavailable",
"reason": "API key not provided"
}
if Config.GROQ_API_KEY:
available_providers["groq"] = {
"status": "available",
"models": GROQ_MODELS
}
else:
available_providers["groq"] = {
"status": "unavailable",
"reason": "API key not provided"
}
return {
"providers": available_providers,
"default_selection": "random"
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error getting providers: {str(e)}")
# Security Management Endpoints
@app.get("/v1/security/info")
async def get_security_info() -> SecurityInfo:
"""Get security configuration information (public endpoint)"""
return SecurityInfo(
security_enabled=Config.ENABLE_SECURITY,
rate_limit_per_minute=Config.RATE_LIMIT_PER_MINUTE,
has_master_key=bool(Config.MASTER_KEY),
configured_keys_count=len([k for k in Config.API_KEYS if k.strip()])
)
@app.post("/v1/security/generate-key")
async def generate_api_key(
request: APIKeyRequest,
master_key: str = Depends(verify_master_key)
) -> APIKeyResponse:
"""Generate a new API key (requires master key)"""
try:
new_key = Config.generate_api_key()
return APIKeyResponse(
api_key=new_key,
description=request.description,
created_at=datetime.now().isoformat(),
status="active"
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating API key: {str(e)}")
@app.post("/v1/security/validate-key")
async def validate_api_key_endpoint(
api_key: str = Depends(verify_api_key)
) -> Dict[str, Any]:
"""Validate an API key"""
return {
"valid": True,
"key_type": "master" if api_key == Config.MASTER_KEY else "standard",
"validated_at": datetime.now().isoformat()
}
@app.get("/v1/security/rate-limit-status")
async def get_rate_limit_status(
request: Request,
api_key: str = Depends(verify_api_key)
) -> Dict[str, Any]:
"""Get current rate limit status"""
client_ip = request.client.host
# Get current minute requests
now = datetime.now()
minute_key = now.strftime("%Y-%m-%d %H:%M")
current_requests = 0
if client_ip in rate_limiter.requests:
current_requests = rate_limiter.requests[client_ip].get(minute_key, 0)
return {
"client_ip": client_ip,
"current_requests": current_requests,
"limit_per_minute": Config.RATE_LIMIT_PER_MINUTE,
"remaining_requests": max(0, Config.RATE_LIMIT_PER_MINUTE - current_requests),
"reset_at": f"{minute_key}:00",
"is_blocked": client_ip in rate_limiter.blocked_ips
}
# Admin endpoints for IP management
@app.post("/v1/admin/block-ip/{ip}")
async def block_ip(
ip: str,
master_key: str = Depends(verify_master_key)
) -> Dict[str, str]:
"""Block an IP address (requires master key)"""
rate_limiter.block_ip(ip)
return {"message": f"IP {ip} has been blocked", "blocked_at": datetime.now().isoformat()}
@app.post("/v1/admin/unblock-ip/{ip}")
async def unblock_ip(
ip: str,
master_key: str = Depends(verify_master_key)
) -> Dict[str, str]:
"""Unblock an IP address (requires master key)"""
rate_limiter.unblock_ip(ip)
return {"message": f"IP {ip} has been unblocked", "unblocked_at": datetime.now().isoformat()}
@app.get("/v1/admin/blocked-ips")
async def get_blocked_ips(
master_key: str = Depends(verify_master_key)
) -> Dict[str, Any]:
"""Get list of blocked IPs (requires master key)"""
return {
"blocked_ips": list(rate_limiter.blocked_ips),
"count": len(rate_limiter.blocked_ips)
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)