Spaces:
Running
Running
from fastapi import FastAPI, HTTPException, Request, UploadFile, File, Depends, status | |
from fastapi.responses import StreamingResponse | |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials | |
from pydantic import BaseModel, Field | |
from typing import List, Optional, Dict, Any, AsyncGenerator | |
import asyncio | |
import json | |
import uuid | |
from datetime import datetime | |
import os | |
from contextlib import asynccontextmanager | |
import tempfile | |
import shutil | |
import random | |
import hashlib | |
import secrets | |
from functools import wraps | |
# Third-party imports | |
from openai import OpenAI, AsyncOpenAI | |
from qdrant_client import AsyncQdrantClient | |
from qdrant_client.models import Distance, VectorParams, PointStruct, Filter, FieldCondition, MatchValue | |
from sentence_transformers import SentenceTransformer | |
import torch | |
import asyncio | |
from concurrent.futures import ThreadPoolExecutor | |
import PyPDF2 | |
# Models | |
OPENROUTER_MODELS = ["deepseek/deepseek-chat-v3-0324:free", "deepseek/deepseek-r1-0528:free", "qwen/qwen3-235b-a22b:free", "google/gemini-2.0-flash-exp:free"] | |
GROQ_MODELS = ["llama-3.3-70b-versatile", "openai/gpt-oss-120b"] | |
# Models for OpenAI-compatible API | |
class Message(BaseModel): | |
role: str = Field(..., description="The role of the message author") | |
content: str = Field(..., description="The content of the message") | |
class ChatCompletionRequest(BaseModel): | |
model: str = Field(default="auto", description="Model to use (auto for dynamic selection)") | |
messages: List[Message] = Field(..., description="List of messages") | |
max_tokens: Optional[int] = Field(default=1024, description="Maximum tokens to generate") | |
temperature: Optional[float] = Field(default=0.7, description="Temperature for sampling") | |
stream: Optional[bool] = Field(default=False, description="Whether to stream responses") | |
top_p: Optional[float] = Field(default=1.0, description="Top-p sampling parameter") | |
provider: Optional[str] = Field(default="random", description="Provider to use (random, openrouter, groq)") | |
class ChatCompletionResponse(BaseModel): | |
id: str | |
object: str = "chat.completion" | |
created: int | |
model: str | |
choices: List[Dict[str, Any]] | |
usage: Optional[Dict[str, int]] = None | |
class ChatCompletionChunk(BaseModel): | |
id: str | |
object: str = "chat.completion.chunk" | |
created: int | |
model: str | |
choices: List[Dict[str, Any]] | |
class DocumentUploadRequest(BaseModel): | |
metadata: Optional[Dict[str, Any]] = None | |
class DocumentSearchRequest(BaseModel): | |
query: str = Field(..., description="Search query") | |
limit: int = Field(default=5, description="Maximum number of results") | |
min_score: float = Field(default=0.1, description="Minimum similarity score") | |
# Configuration | |
class Config: | |
# Provider API Keys | |
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY") | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
# Vector DB Configuration | |
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333") | |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY") | |
COLLECTION_NAME = os.getenv("COLLECTION_NAME", "documents") | |
# Embedding Configuration | |
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "sentence-transformers/all-MiniLM-L6-v2") | |
TOP_K = int(os.getenv("TOP_K", "10")) | |
SIMILARITY_THRESHOLD = float(os.getenv("SIMILARITY_THRESHOLD", "0.1")) | |
DEVICE = os.getenv("DEVICE", "cuda" if torch.cuda.is_available() else "cpu") | |
# Security Configuration | |
API_KEYS = os.getenv("API_KEYS", "").split(",") if os.getenv("API_KEYS") else [] | |
MASTER_KEY = os.getenv("MASTER_KEY", "") | |
ENABLE_SECURITY = os.getenv("ENABLE_SECURITY", "true").lower() == "true" | |
RATE_LIMIT_PER_MINUTE = int(os.getenv("RATE_LIMIT_PER_MINUTE", "60")) | |
def generate_api_key(cls) -> str: | |
"""Generate a new API key""" | |
return f"sk-{secrets.token_urlsafe(32)}" | |
def validate_api_key(cls, api_key: str) -> bool: | |
"""Validate API key""" | |
if not cls.ENABLE_SECURITY: | |
return True | |
if not api_key: | |
return False | |
# Check master key | |
if cls.MASTER_KEY and api_key == cls.MASTER_KEY: | |
return True | |
# Check configured API keys | |
if cls.API_KEYS and api_key in cls.API_KEYS: | |
return True | |
return False | |
# Security Models | |
class APIKeyRequest(BaseModel): | |
description: Optional[str] = Field(None, description="Description for the API key") | |
class APIKeyResponse(BaseModel): | |
api_key: str | |
description: Optional[str] = None | |
created_at: str | |
status: str = "active" | |
class SecurityInfo(BaseModel): | |
security_enabled: bool | |
rate_limit_per_minute: int | |
has_master_key: bool | |
configured_keys_count: int | |
# Rate Limiting | |
class RateLimiter: | |
def __init__(self): | |
self.requests = {} | |
self.blocked_ips = set() | |
def is_allowed(self, identifier: str, limit_per_minute: int = Config.RATE_LIMIT_PER_MINUTE) -> bool: | |
"""Check if request is allowed based on rate limit""" | |
if not Config.ENABLE_SECURITY: | |
return True | |
if identifier in self.blocked_ips: | |
return False | |
now = datetime.now() | |
minute_key = now.strftime("%Y-%m-%d %H:%M") | |
if identifier not in self.requests: | |
self.requests[identifier] = {} | |
if minute_key not in self.requests[identifier]: | |
self.requests[identifier][minute_key] = 0 | |
# Clean old entries (keep only last 2 minutes) | |
keys_to_remove = [] | |
for key in self.requests[identifier]: | |
try: | |
key_time = datetime.strptime(key, "%Y-%m-%d %H:%M") | |
if (now - key_time).total_seconds() > 120: # 2 minutes | |
keys_to_remove.append(key) | |
except ValueError: | |
keys_to_remove.append(key) | |
for key in keys_to_remove: | |
del self.requests[identifier][key] | |
# Check current minute limit | |
current_requests = self.requests[identifier].get(minute_key, 0) | |
if current_requests >= limit_per_minute: | |
return False | |
self.requests[identifier][minute_key] = current_requests + 1 | |
return True | |
def block_ip(self, ip: str): | |
"""Block an IP address""" | |
self.blocked_ips.add(ip) | |
def unblock_ip(self, ip: str): | |
"""Unblock an IP address""" | |
self.blocked_ips.discard(ip) | |
# Security Dependencies | |
security = HTTPBearer(auto_error=False) | |
rate_limiter = RateLimiter() | |
async def verify_api_key( | |
request: Request, | |
credentials: Optional[HTTPAuthorizationCredentials] = Depends(security) | |
) -> str: | |
"""Verify API key from Authorization header""" | |
if not Config.ENABLE_SECURITY: | |
return "security_disabled" | |
# Get client IP | |
client_ip = request.client.host | |
# Check rate limit | |
if not rate_limiter.is_allowed(client_ip): | |
raise HTTPException( | |
status_code=status.HTTP_429_TOO_MANY_REQUESTS, | |
detail="Rate limit exceeded" | |
) | |
# Check API key | |
if not credentials: | |
raise HTTPException( | |
status_code=status.HTTP_401_UNAUTHORIZED, | |
detail="API key required. Please provide a valid API key in the Authorization header as 'Bearer <your-api-key>'" | |
) | |
api_key = credentials.credentials | |
if not Config.validate_api_key(api_key): | |
raise HTTPException( | |
status_code=status.HTTP_401_UNAUTHORIZED, | |
detail="Invalid API key" | |
) | |
return api_key | |
async def verify_master_key( | |
request: Request, | |
credentials: Optional[HTTPAuthorizationCredentials] = Depends(security) | |
) -> str: | |
"""Verify master key for admin operations""" | |
if not Config.ENABLE_SECURITY: | |
return "security_disabled" | |
if not credentials: | |
raise HTTPException( | |
status_code=status.HTTP_401_UNAUTHORIZED, | |
detail="Master key required for admin operations" | |
) | |
api_key = credentials.credentials | |
if not Config.MASTER_KEY or api_key != Config.MASTER_KEY: | |
raise HTTPException( | |
status_code=status.HTTP_403_FORBIDDEN, | |
detail="Invalid master key" | |
) | |
return api_key | |
class DynamicOpenAIService: | |
"""Service for dynamic OpenAI provider selection""" | |
def __init__(self): | |
self.validate_api_keys() | |
def validate_api_keys(self): | |
"""Validate that at least one API key is available""" | |
if not Config.OPENROUTER_API_KEY and not Config.GROQ_API_KEY: | |
raise ValueError("At least one API key (OPENROUTER_API_KEY or GROQ_API_KEY) must be provided") | |
if not Config.OPENROUTER_API_KEY: | |
print("Warning: OPENROUTER_API_KEY not found, will only use Groq") | |
if not Config.GROQ_API_KEY: | |
print("Warning: GROQ_API_KEY not found, will only use OpenRouter") | |
def get_client(self, provider="random"): | |
"""Get OpenAI client for specified provider""" | |
available_providers = [] | |
if Config.OPENROUTER_API_KEY: | |
available_providers.append("openrouter") | |
if Config.GROQ_API_KEY: | |
available_providers.append("groq") | |
if not available_providers: | |
raise ValueError("No API keys available for any provider") | |
if provider == "random": | |
provider = random.choice(available_providers) | |
elif provider not in available_providers: | |
# Fallback to available provider | |
provider = available_providers[0] | |
print(f"Requested provider not available, using {provider}") | |
print(f"Selected provider: {provider}") | |
if provider == "openrouter": | |
return ( | |
OpenAI(api_key=Config.OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1"), | |
OPENROUTER_MODELS, | |
provider | |
) | |
else: # groq | |
return ( | |
OpenAI(api_key=Config.GROQ_API_KEY, base_url="https://api.groq.com/openai/v1"), | |
GROQ_MODELS, | |
provider | |
) | |
async def get_async_client(self, provider="random"): | |
"""Get AsyncOpenAI client for specified provider""" | |
available_providers = [] | |
if Config.OPENROUTER_API_KEY: | |
available_providers.append("openrouter") | |
if Config.GROQ_API_KEY: | |
available_providers.append("groq") | |
if not available_providers: | |
raise ValueError("No API keys available for any provider") | |
if provider == "random": | |
provider = random.choice(available_providers) | |
elif provider not in available_providers: | |
# Fallback to available provider | |
provider = available_providers[0] | |
print(f"Requested provider not available, using {provider}") | |
print(f"Selected provider: {provider}") | |
if provider == "openrouter": | |
return ( | |
AsyncOpenAI(api_key=Config.OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1"), | |
OPENROUTER_MODELS, | |
provider | |
) | |
else: # groq | |
return ( | |
AsyncOpenAI(api_key=Config.GROQ_API_KEY, base_url="https://api.groq.com/openai/v1"), | |
GROQ_MODELS, | |
provider | |
) | |
def get_text_response(self, prompt, provider="random", model=None): | |
"""Get text response from AI""" | |
client, models, selected_provider = self.get_client(provider) | |
if not model or model == "auto": | |
model = random.choice(models) | |
print(f"Using model: {model}") | |
response = client.chat.completions.create( | |
model=model, | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=1024, | |
temperature=0.7 | |
) | |
return response.choices[0].message.content | |
def get_text_response_streaming(self, prompt, provider="random", model=None): | |
"""Get streaming text response from AI""" | |
client, models, selected_provider = self.get_client(provider) | |
if not model or model == "auto": | |
model = random.choice(models) | |
print(f"Using model: {model}") | |
stream = client.chat.completions.create( | |
model=model, | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=1024, | |
temperature=0.7, | |
stream=True | |
) | |
for chunk in stream: | |
if chunk.choices[0].delta.content is not None: | |
yield chunk.choices[0].delta.content | |
class ApplicationState: | |
"""Application state container""" | |
def __init__(self): | |
self.openai_service = None | |
self.qdrant_client = None | |
self.embedding_service = None | |
self.document_manager = None | |
# Global state instance | |
app_state = ApplicationState() | |
class EmbeddingService: | |
"""Service for generating embeddings using sentence-transformers""" | |
def __init__(self): | |
self.model_name = Config.EMBEDDING_MODEL | |
self.device = Config.DEVICE | |
self.dimension = 384 # all-MiniLM-L6-v2 dimension | |
self.executor = ThreadPoolExecutor(max_workers=4) | |
# Load the model | |
print(f"Loading embedding model: {self.model_name}") | |
self.model = SentenceTransformer(self.model_name, device=self.device) | |
print(f"Model loaded successfully on device: {self.device}") | |
async def get_embedding(self, text: str) -> List[float]: | |
"""Generate embedding for given text""" | |
try: | |
loop = asyncio.get_event_loop() | |
embedding = await loop.run_in_executor( | |
self.executor, | |
self._encode_text, | |
text | |
) | |
return embedding.tolist() | |
except Exception as e: | |
print(f"Error generating embedding: {e}") | |
return [0.1] * self.dimension | |
def _encode_text(self, text: str): | |
"""Synchronous text encoding - runs in thread pool""" | |
return self.model.encode([text])[0] | |
async def get_document_embedding(self, text: str) -> List[float]: | |
"""Generate embedding for document text""" | |
return await self.get_embedding(text) | |
async def get_query_embedding(self, text: str) -> List[float]: | |
"""Generate embedding for query text""" | |
return await self.get_embedding(text) | |
async def batch_embed(self, texts: List[str]) -> List[List[float]]: | |
"""Generate embeddings for multiple texts efficiently""" | |
try: | |
loop = asyncio.get_event_loop() | |
embeddings = await loop.run_in_executor( | |
self.executor, | |
self._batch_encode_texts, | |
texts | |
) | |
return embeddings.tolist() | |
except Exception as e: | |
print(f"Error in batch embedding: {e}") | |
return [[0.1] * self.dimension for _ in texts] | |
def _batch_encode_texts(self, texts: List[str]): | |
"""Synchronous batch encoding - runs in thread pool""" | |
return self.model.encode(texts) | |
def health_check(self) -> dict: | |
"""Check embedding service health""" | |
try: | |
test_embedding = self.model.encode(["test"]) | |
return { | |
"status": "healthy", | |
"model": self.model_name, | |
"device": self.device, | |
"dimension": self.dimension, | |
"test_embedding_shape": test_embedding.shape | |
} | |
except Exception as e: | |
return { | |
"status": "unhealthy", | |
"model": self.model_name, | |
"error": str(e) | |
} | |
class DocumentManager: | |
"""Enhanced document management with async support""" | |
def __init__(self, qdrant_client: AsyncQdrantClient, embedding_service: EmbeddingService): | |
self.qdrant_client = qdrant_client | |
self.embedding_service = embedding_service | |
self.collection_name = Config.COLLECTION_NAME | |
self.vector_size = 384 | |
self.executor = ThreadPoolExecutor(max_workers=2) | |
async def _read_pdf(self, file_path: str) -> str: | |
"""Read text from PDF file asynchronously""" | |
try: | |
loop = asyncio.get_event_loop() | |
return await loop.run_in_executor(self.executor, self._sync_read_pdf, file_path) | |
except Exception as e: | |
print(f"Error reading PDF {file_path}: {e}") | |
return "" | |
def _sync_read_pdf(self, file_path: str) -> str: | |
"""Synchronous PDF reading""" | |
try: | |
with open(file_path, 'rb') as file: | |
pdf_reader = PyPDF2.PdfReader(file) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() + "\n" | |
return text | |
except Exception as e: | |
print(f"Error reading PDF {file_path}: {e}") | |
return "" | |
def _chunk_text(self, text: str, chunk_size: int = 500, overlap: int = 50) -> List[str]: | |
"""Split text into chunks""" | |
if len(text) <= chunk_size: | |
return [text] | |
chunks = [] | |
start = 0 | |
while start < len(text): | |
end = start + chunk_size | |
if end < len(text): | |
sentence_end = text.rfind('.', start, end) | |
if sentence_end > start: | |
end = sentence_end + 1 | |
else: | |
word_end = text.rfind(' ', start, end) | |
if word_end > start: | |
end = word_end | |
chunk = text[start:end].strip() | |
if chunk: | |
chunks.append(chunk) | |
start = end - overlap | |
return chunks | |
async def _ensure_collection_exists(self): | |
"""Ensure the collection exists, create if it doesn't""" | |
try: | |
collections = await self.qdrant_client.get_collections() | |
collection_names = [c.name for c in collections.collections] | |
if self.collection_name not in collection_names: | |
print(f"Creating collection '{self.collection_name}' on-demand...") | |
await self.qdrant_client.create_collection( | |
collection_name=self.collection_name, | |
vectors_config=VectorParams( | |
size=self.vector_size, | |
distance=Distance.COSINE | |
) | |
) | |
print(f"✓ Collection '{self.collection_name}' created successfully!") | |
except Exception as e: | |
print(f"Warning: Could not ensure collection exists: {e}") | |
async def add_document(self, file_path: str, metadata: Dict[str, Any] = None) -> str: | |
"""Add a PDF document to the collection""" | |
try: | |
await self._ensure_collection_exists() | |
# Read PDF | |
text = await self._read_pdf(file_path) | |
if not text: | |
print(f"Could not extract text from {file_path}") | |
return "" | |
# Create chunks | |
chunks = self._chunk_text(text) | |
if not chunks: | |
print(f"No chunks created from {file_path}") | |
return "" | |
# Generate document ID | |
document_id = str(uuid.uuid4()) | |
# Create embeddings for all chunks | |
embeddings = await self.embedding_service.batch_embed(chunks) | |
# Create points for each chunk | |
points = [] | |
for i, (chunk, embedding) in enumerate(zip(chunks, embeddings)): | |
payload = { | |
"document_id": document_id, | |
"file_path": file_path, | |
"chunk_index": i, | |
"content": chunk, # Use 'content' as the main field | |
"chunk_text": chunk, # Keep for compatibility | |
"total_chunks": len(chunks), | |
"timestamp": datetime.now().isoformat() | |
} | |
if metadata: | |
payload["metadata"] = metadata | |
point = PointStruct( | |
id=str(uuid.uuid4()), | |
vector=embedding, | |
payload=payload | |
) | |
points.append(point) | |
# Insert into Qdrant | |
await self.qdrant_client.upsert(collection_name=self.collection_name, points=points) | |
print(f"✓ Added document: {file_path}") | |
print(f" Document ID: {document_id}") | |
print(f" Chunks: {len(chunks)}") | |
return document_id | |
except Exception as e: | |
print(f"Error adding document {file_path}: {e}") | |
return "" | |
async def search_documents(self, query: str, limit: int = 5, min_score: float = 0.1) -> List[Dict[str, Any]]: | |
"""Search for relevant document chunks""" | |
try: | |
await self._ensure_collection_exists() | |
print(f"Document Search - Query: '{query}', Limit: {limit}, Min Score: {min_score}") | |
# Generate query embedding | |
query_embedding = await self.embedding_service.get_query_embedding(query) | |
print(f"Document Search - Generated embedding vector of size: {len(query_embedding)}") | |
# Search in Qdrant | |
search_results = await self.qdrant_client.search( | |
collection_name=self.collection_name, | |
query_vector=query_embedding, | |
limit=limit, | |
score_threshold=min_score | |
) | |
print(f"Document Search - Qdrant returned {len(search_results)} results") | |
# Format results | |
results = [] | |
for i, result in enumerate(search_results): | |
content = result.payload.get("content", result.payload.get("chunk_text", "")) | |
print(f"Document Search - Result {i+1}: Score={result.score:.4f}, Content preview: {content[:100]}...") | |
results.append({ | |
"score": result.score, | |
"text": content, | |
"file_path": result.payload.get("file_path", ""), | |
"document_id": result.payload.get("document_id", ""), | |
"chunk_index": result.payload.get("chunk_index", 0) | |
}) | |
print(f"✓ Document Search - Found {len(results)} results for query: '{query}'") | |
return results | |
except Exception as e: | |
print(f"Error searching: {e}") | |
import traceback | |
traceback.print_exc() | |
return [] | |
async def list_documents(self) -> List[Dict[str, Any]]: | |
"""List all documents in the collection""" | |
try: | |
await self._ensure_collection_exists() | |
# Get all points | |
points, _ = await self.qdrant_client.scroll( | |
collection_name=self.collection_name, | |
limit=10000, | |
with_payload=True, | |
with_vectors=False | |
) | |
# Group by document_id | |
documents = {} | |
for point in points: | |
doc_id = point.payload.get("document_id") | |
if doc_id and doc_id not in documents: | |
documents[doc_id] = { | |
"document_id": doc_id, | |
"file_path": point.payload.get("file_path", ""), | |
"total_chunks": point.payload.get("total_chunks", 0), | |
"timestamp": point.payload.get("timestamp", ""), | |
"metadata": point.payload.get("metadata", {}) | |
} | |
doc_list = list(documents.values()) | |
print(f"✓ Found {len(doc_list)} documents") | |
return doc_list | |
except Exception as e: | |
print(f"Error listing documents: {e}") | |
return [] | |
async def delete_document(self, document_id: str) -> bool: | |
"""Delete a document and all its chunks""" | |
try: | |
await self._ensure_collection_exists() | |
# Find all points for this document | |
points, _ = await self.qdrant_client.scroll( | |
collection_name=self.collection_name, | |
limit=10000, | |
with_payload=True, | |
with_vectors=False | |
) | |
# Collect point IDs to delete | |
points_to_delete = [] | |
for point in points: | |
if point.payload.get("document_id") == document_id: | |
points_to_delete.append(point.id) | |
if not points_to_delete: | |
print(f"No document found with ID: {document_id}") | |
return False | |
# Delete points | |
await self.qdrant_client.delete( | |
collection_name=self.collection_name, | |
points_selector=points_to_delete | |
) | |
print(f"✓ Deleted document: {document_id} ({len(points_to_delete)} chunks)") | |
return True | |
except Exception as e: | |
print(f"Error deleting document: {e}") | |
return False | |
class RAGService: | |
"""Service for retrieval-augmented generation""" | |
async def retrieve_relevant_chunks(query: str, top_k: int = Config.TOP_K) -> List[Dict[str, Any]]: | |
"""Retrieve relevant document chunks using the document manager""" | |
try: | |
if app_state.document_manager is None: | |
print("Error: Document manager is not initialized") | |
return [] | |
# Use a lower similarity threshold for RAG to get more results | |
min_score = 0.1 # Lower threshold for RAG | |
print(f"RAG Search - Query: '{query}', Limit: {top_k}, Min Score: {min_score}") | |
# Use the document manager's search functionality | |
results = await app_state.document_manager.search_documents( | |
query=query, | |
limit=top_k, | |
min_score=min_score | |
) | |
print(f"RAG Search - Found {len(results)} results") | |
# If no results with low threshold, try even lower | |
if not results: | |
print("No results with min_score=0.1, trying with min_score=0.0") | |
results = await app_state.document_manager.search_documents( | |
query=query, | |
limit=top_k, | |
min_score=0.0 | |
) | |
print(f"RAG Search - Found {len(results)} results with min_score=0.0") | |
return results | |
except Exception as e: | |
print(f"Error retrieving chunks: {e}") | |
return [] | |
def build_context_prompt(query: str, results: List[Dict[str, Any]]) -> str: | |
"""Build a context-aware prompt with retrieved chunks""" | |
if not results: | |
return query | |
# Build context parts | |
context_parts = [] | |
for result in results: | |
context_parts.append(f"Source: {result['file_path']}\n{result['text']}") | |
combined_context = "\n\n---\n\n".join(context_parts) | |
prompt = f"""Use the following context to answer the user's question naturally and directly. Don't mention that you're using context or say "based on the context" - just provide the answer as if you know it. | |
Context: | |
{combined_context} | |
Question: {query} | |
Important: When responding to questions that use pronouns like "he," "him," "his," or any similar references, always refer to Subhrajit specifically. Any personal pronouns in questions should be understood as referring to Subhrajit. | |
Please ensure your answer is complete and not cut off, adjusting its length as necessary to fit within the desired context length. Always Respond it in Markdown Format.""" | |
return prompt | |
async def lifespan(app: FastAPI): | |
# Startup | |
print("Initializing services...") | |
# Initialize dynamic OpenAI service | |
try: | |
app_state.openai_service = DynamicOpenAIService() | |
print("✓ Dynamic OpenAI service initialized") | |
except Exception as e: | |
print(f"✗ Error initializing OpenAI service: {e}") | |
raise e | |
# Initialize Qdrant client | |
try: | |
app_state.qdrant_client = AsyncQdrantClient( | |
url=Config.QDRANT_URL, | |
api_key=Config.QDRANT_API_KEY | |
) | |
print("✓ Qdrant client initialized") | |
except Exception as e: | |
print(f"✗ Error initializing Qdrant client: {e}") | |
raise e | |
# Initialize embedding service | |
try: | |
print("Loading embedding model...") | |
app_state.embedding_service = EmbeddingService() | |
print(f"✓ Embedding model loaded: {Config.EMBEDDING_MODEL}") | |
print(f"✓ Model device: {Config.DEVICE}") | |
print(f"✓ Vector dimension: {app_state.embedding_service.dimension}") | |
except Exception as e: | |
print(f"✗ Error initializing embedding service: {e}") | |
raise e | |
# Initialize document manager | |
try: | |
app_state.document_manager = DocumentManager( | |
qdrant_client=app_state.qdrant_client, | |
embedding_service=app_state.embedding_service | |
) | |
print("✓ Document manager initialized") | |
except Exception as e: | |
print(f"✗ Error initializing document manager: {e}") | |
raise e | |
print("🚀 All services initialized successfully!") | |
# Print security information | |
if Config.ENABLE_SECURITY: | |
print("\n🔒 Security Configuration:") | |
print(f" Security: ENABLED") | |
print(f" Rate Limit: {Config.RATE_LIMIT_PER_MINUTE} requests/minute") | |
print(f" Master Key: {'✓ Configured' if Config.MASTER_KEY else '✗ Not configured'}") | |
print(f" API Keys: {len([k for k in Config.API_KEYS if k.strip()])} configured") | |
if not Config.MASTER_KEY and not Config.API_KEYS: | |
print(" ⚠️ WARNING: No API keys configured! Set MASTER_KEY or API_KEYS environment variable.") | |
else: | |
print("\n🔓 Security: DISABLED") | |
print(" All endpoints are publicly accessible") | |
yield | |
# Shutdown | |
print("Shutting down services...") | |
if app_state.qdrant_client: | |
await app_state.qdrant_client.close() | |
print("✓ Qdrant client closed") | |
if app_state.embedding_service and hasattr(app_state.embedding_service, 'executor'): | |
app_state.embedding_service.executor.shutdown(wait=True) | |
print("✓ Embedding service executor shutdown") | |
if app_state.document_manager and hasattr(app_state.document_manager, 'executor'): | |
app_state.document_manager.executor.shutdown(wait=True) | |
print("✓ Document manager executor shutdown") | |
print("✓ Shutdown complete") | |
# Initialize FastAPI app | |
app = FastAPI( | |
title="Enhanced RAG API with Dynamic Provider Selection", | |
description="OpenAI-compatible API for RAG with dynamic provider selection (OpenRouter/Groq) and document management", | |
version="1.0.0", | |
lifespan=lifespan | |
) | |
async def root(): | |
return { | |
"message": "Enhanced RAG API with Dynamic Provider Selection", | |
"status": "running", | |
"security_enabled": Config.ENABLE_SECURITY, | |
"version": "1.0.0" | |
} | |
async def health_check(api_key: str = Depends(verify_api_key)): | |
"""Health check endpoint""" | |
try: | |
# Test Qdrant connection | |
if app_state.qdrant_client: | |
collections = await app_state.qdrant_client.get_collections() | |
qdrant_status = "connected" | |
else: | |
qdrant_status = "not_initialized" | |
except Exception as e: | |
qdrant_status = f"error: {str(e)}" | |
# Test embedding service | |
if app_state.embedding_service is None: | |
embedding_health = {"status": "not_initialized", "error": "EmbeddingService is None"} | |
else: | |
try: | |
embedding_health = app_state.embedding_service.health_check() | |
except Exception as e: | |
embedding_health = {"status": "error", "error": str(e)} | |
# Test OpenAI service | |
if app_state.openai_service is None: | |
openai_health = {"status": "not_initialized", "error": "OpenAI service is None"} | |
else: | |
try: | |
# Test both providers if available | |
test_results = {} | |
if Config.OPENROUTER_API_KEY: | |
try: | |
client, models, provider = app_state.openai_service.get_client("openrouter") | |
test_response = client.chat.completions.create( | |
model=models[0], | |
messages=[{"role": "user", "content": "test"}], | |
max_tokens=1 | |
) | |
test_results["openrouter"] = {"status": "healthy", "model": models[0]} | |
except Exception as e: | |
test_results["openrouter"] = {"status": "error", "error": str(e)} | |
if Config.GROQ_API_KEY: | |
try: | |
client, models, provider = app_state.openai_service.get_client("groq") | |
test_response = client.chat.completions.create( | |
model=models[0], | |
messages=[{"role": "user", "content": "test"}], | |
max_tokens=1 | |
) | |
test_results["groq"] = {"status": "healthy", "model": models[0]} | |
except Exception as e: | |
test_results["groq"] = {"status": "error", "error": str(e)} | |
openai_health = {"status": "healthy", "providers": test_results} | |
except Exception as e: | |
openai_health = {"status": "error", "error": str(e)} | |
return { | |
"status": "healthy" if app_state.embedding_service is not None else "unhealthy", | |
"openai_service": openai_health, | |
"qdrant": qdrant_status, | |
"embedding_service": embedding_health, | |
"document_manager": "initialized" if app_state.document_manager else "not_initialized", | |
"collection": Config.COLLECTION_NAME, | |
"embedding_model": Config.EMBEDDING_MODEL, | |
"available_providers": { | |
"openrouter": bool(Config.OPENROUTER_API_KEY), | |
"groq": bool(Config.GROQ_API_KEY) | |
} | |
} | |
async def chat_completions(request: ChatCompletionRequest, api_key: str = Depends(verify_api_key)): | |
"""OpenAI-compatible chat completions endpoint with enhanced RAG and dynamic provider selection""" | |
if not app_state.openai_service: | |
raise HTTPException(status_code=500, detail="OpenAI service not initialized") | |
try: | |
# Get the last user message for retrieval | |
user_messages = [msg for msg in request.messages if msg.role == "user"] | |
if not user_messages: | |
raise HTTPException(status_code=400, detail="No user message found") | |
last_user_message = user_messages[-1].content | |
print(f"Processing query: {last_user_message[:100]}...") | |
# Retrieve relevant chunks using enhanced search | |
try: | |
relevant_results = await RAGService.retrieve_relevant_chunks(last_user_message) | |
print(f"Retrieved {len(relevant_results)} chunks") | |
except Exception as e: | |
print(f"Error in retrieval: {e}") | |
relevant_results = [] | |
# Build context-aware prompt | |
if relevant_results: | |
context_prompt = RAGService.build_context_prompt(last_user_message, relevant_results) | |
enhanced_messages = request.messages[:-1] + [Message(role="user", content=context_prompt)] | |
print("Using context-enhanced prompt") | |
else: | |
enhanced_messages = request.messages | |
print("Using original prompt (no context)") | |
# Convert to OpenAI format | |
openai_messages = [{"role": msg.role, "content": msg.content} for msg in enhanced_messages] | |
print(f"Sending {len(openai_messages)} messages to OpenAI API") | |
if request.stream: | |
return StreamingResponse( | |
stream_chat_completion(openai_messages, request), | |
media_type="text/event-stream" | |
) | |
else: | |
return await create_chat_completion(openai_messages, request) | |
except HTTPException: | |
raise | |
except Exception as e: | |
print(f"Unexpected error in chat_completions: {e}") | |
import traceback | |
traceback.print_exc() | |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") | |
async def create_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> ChatCompletionResponse: | |
"""Create a non-streaming chat completion using dynamic provider selection""" | |
try: | |
# Get async client with dynamic provider selection | |
client, models, selected_provider = await app_state.openai_service.get_async_client(request.provider) | |
# Select model | |
if request.model == "auto" or not request.model: | |
selected_model = random.choice(models) | |
else: | |
selected_model = request.model | |
print(f"Using provider: {selected_provider}, model: {selected_model}") | |
response = await client.chat.completions.create( | |
model=selected_model, | |
messages=messages, | |
max_tokens=request.max_tokens, | |
temperature=request.temperature, | |
top_p=request.top_p, | |
stream=False | |
) | |
result = ChatCompletionResponse( | |
id=response.id, | |
created=response.created, | |
model=f"{selected_provider}:{response.model}", # Include provider in model name | |
choices=[{ | |
"index": choice.index, | |
"message": { | |
"role": choice.message.role, | |
"content": choice.message.content | |
}, | |
"finish_reason": choice.finish_reason | |
} for choice in response.choices], | |
usage={ | |
"prompt_tokens": response.usage.prompt_tokens, | |
"completion_tokens": response.usage.completion_tokens, | |
"total_tokens": response.usage.total_tokens | |
} if response.usage else None | |
) | |
return result | |
except Exception as e: | |
print(f"Error in create_chat_completion: {e}") | |
raise HTTPException(status_code=500, detail=f"Error calling OpenAI API: {str(e)}") | |
async def stream_chat_completion(messages: List[Dict], request: ChatCompletionRequest) -> AsyncGenerator[str, None]: | |
"""Stream chat completion responses using dynamic provider selection""" | |
try: | |
# Get async client with dynamic provider selection | |
client, models, selected_provider = await app_state.openai_service.get_async_client(request.provider) | |
# Select model | |
if request.model == "auto" or not request.model: | |
selected_model = random.choice(models) | |
else: | |
selected_model = request.model | |
print(f"Using provider: {selected_provider}, model: {selected_model}") | |
stream = await client.chat.completions.create( | |
model=selected_model, | |
messages=messages, | |
max_tokens=request.max_tokens, | |
temperature=request.temperature, | |
top_p=request.top_p, | |
stream=True | |
) | |
async for chunk in stream: | |
if chunk.choices and len(chunk.choices) > 0: | |
choice = chunk.choices[0] | |
if choice.delta: | |
chunk_response = ChatCompletionChunk( | |
id=chunk.id, | |
created=chunk.created, | |
model=f"{selected_provider}:{chunk.model}", # Include provider in model name | |
choices=[{ | |
"index": choice.index, | |
"delta": { | |
"role": choice.delta.role if choice.delta.role else None, | |
"content": choice.delta.content if choice.delta.content else None | |
}, | |
"finish_reason": choice.finish_reason | |
}] | |
) | |
yield f"data: {chunk_response.model_dump_json()}\n\n" | |
yield "data: [DONE]\n\n" | |
except Exception as e: | |
print(f"Error in streaming: {e}") | |
error_chunk = { | |
"error": { | |
"message": str(e), | |
"type": "internal_error" | |
} | |
} | |
yield f"data: {json.dumps(error_chunk)}\n\n" | |
# Document management endpoints | |
async def upload_document( | |
file: UploadFile = File(...), | |
metadata: str = None, | |
api_key: str = Depends(verify_api_key) | |
): | |
"""Upload a PDF document""" | |
try: | |
if not app_state.document_manager: | |
raise HTTPException(status_code=500, detail="Document manager not initialized") | |
# Validate file type | |
if not file.filename.lower().endswith('.pdf'): | |
raise HTTPException(status_code=400, detail="Only PDF files are supported") | |
# Parse metadata if provided | |
parsed_metadata = {} | |
if metadata: | |
try: | |
parsed_metadata = json.loads(metadata) | |
except json.JSONDecodeError: | |
raise HTTPException(status_code=400, detail="Invalid metadata JSON") | |
# Save uploaded file temporarily | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file: | |
shutil.copyfileobj(file.file, tmp_file) | |
tmp_path = tmp_file.name | |
try: | |
# Add document to the collection | |
document_id = await app_state.document_manager.add_document( | |
file_path=tmp_path, | |
metadata={ | |
**parsed_metadata, | |
"original_filename": file.filename, | |
"upload_timestamp": datetime.now().isoformat() | |
} | |
) | |
if not document_id: | |
raise HTTPException(status_code=500, detail="Failed to add document") | |
return { | |
"message": "Document uploaded successfully", | |
"document_id": document_id, | |
"filename": file.filename | |
} | |
finally: | |
# Clean up temporary file | |
os.unlink(tmp_path) | |
except HTTPException: | |
raise | |
except Exception as e: | |
print(f"Error uploading document: {e}") | |
raise HTTPException(status_code=500, detail=f"Error uploading document: {str(e)}") | |
async def search_documents(request: DocumentSearchRequest, api_key: str = Depends(verify_api_key)): | |
"""Search for documents""" | |
try: | |
if not app_state.document_manager: | |
raise HTTPException(status_code=500, detail="Document manager not initialized") | |
results = await app_state.document_manager.search_documents( | |
query=request.query, | |
limit=request.limit, | |
min_score=request.min_score | |
) | |
return { | |
"query": request.query, | |
"results": results, | |
"count": len(results) | |
} | |
except Exception as e: | |
print(f"Error searching documents: {e}") | |
raise HTTPException(status_code=500, detail=f"Error searching documents: {str(e)}") | |
async def list_documents(api_key: str = Depends(verify_api_key)): | |
"""List all documents""" | |
try: | |
if not app_state.document_manager: | |
raise HTTPException(status_code=500, detail="Document manager not initialized") | |
documents = await app_state.document_manager.list_documents() | |
return { | |
"documents": documents, | |
"count": len(documents) | |
} | |
except Exception as e: | |
print(f"Error listing documents: {e}") | |
raise HTTPException(status_code=500, detail=f"Error listing documents: {str(e)}") | |
async def delete_document(document_id: str, api_key: str = Depends(verify_api_key)): | |
"""Delete a document""" | |
try: | |
if not app_state.document_manager: | |
raise HTTPException(status_code=500, detail="Document manager not initialized") | |
success = await app_state.document_manager.delete_document(document_id) | |
if not success: | |
raise HTTPException(status_code=404, detail="Document not found") | |
return {"message": "Document deleted successfully", "document_id": document_id} | |
except HTTPException: | |
raise | |
except Exception as e: | |
print(f"Error deleting document: {e}") | |
raise HTTPException(status_code=500, detail=f"Error deleting document: {str(e)}") | |
# Legacy compatibility endpoints | |
async def add_document_legacy(content: str, metadata: Optional[Dict] = None, api_key: str = Depends(verify_api_key)): | |
"""Legacy endpoint for adding documents (text content)""" | |
try: | |
if not app_state.embedding_service or not app_state.qdrant_client: | |
raise HTTPException(status_code=500, detail="Services not initialized") | |
await app_state.document_manager._ensure_collection_exists() | |
embedding = await app_state.embedding_service.get_document_embedding(content) | |
point = PointStruct( | |
id=str(uuid.uuid4()), | |
vector=embedding, | |
payload={ | |
"content": content, | |
"metadata": metadata or {}, | |
"timestamp": datetime.now().isoformat() | |
} | |
) | |
await app_state.qdrant_client.upsert( | |
collection_name=Config.COLLECTION_NAME, | |
points=[point] | |
) | |
return {"message": "Document added successfully", "id": point.id} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error adding document: {str(e)}") | |
async def get_collection_info(api_key: str = Depends(verify_api_key)): | |
"""Get information about the collection""" | |
try: | |
if app_state.qdrant_client is None: | |
raise HTTPException(status_code=500, detail="Qdrant client is not initialized") | |
await app_state.document_manager._ensure_collection_exists() | |
collection_info = await app_state.qdrant_client.get_collection(Config.COLLECTION_NAME) | |
return { | |
"name": Config.COLLECTION_NAME, | |
"vectors_count": collection_info.vectors_count, | |
"status": collection_info.status, | |
"vector_size": app_state.embedding_service.dimension if app_state.embedding_service else "unknown" | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error getting collection info: {str(e)}") | |
# New endpoint to get available providers and models | |
async def get_providers(api_key: str = Depends(verify_api_key)): | |
"""Get available providers and their models""" | |
try: | |
if not app_state.openai_service: | |
raise HTTPException(status_code=500, detail="OpenAI service not initialized") | |
available_providers = {} | |
if Config.OPENROUTER_API_KEY: | |
available_providers["openrouter"] = { | |
"status": "available", | |
"models": OPENROUTER_MODELS | |
} | |
else: | |
available_providers["openrouter"] = { | |
"status": "unavailable", | |
"reason": "API key not provided" | |
} | |
if Config.GROQ_API_KEY: | |
available_providers["groq"] = { | |
"status": "available", | |
"models": GROQ_MODELS | |
} | |
else: | |
available_providers["groq"] = { | |
"status": "unavailable", | |
"reason": "API key not provided" | |
} | |
return { | |
"providers": available_providers, | |
"default_selection": "random" | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error getting providers: {str(e)}") | |
# Security Management Endpoints | |
async def get_security_info() -> SecurityInfo: | |
"""Get security configuration information (public endpoint)""" | |
return SecurityInfo( | |
security_enabled=Config.ENABLE_SECURITY, | |
rate_limit_per_minute=Config.RATE_LIMIT_PER_MINUTE, | |
has_master_key=bool(Config.MASTER_KEY), | |
configured_keys_count=len([k for k in Config.API_KEYS if k.strip()]) | |
) | |
async def generate_api_key( | |
request: APIKeyRequest, | |
master_key: str = Depends(verify_master_key) | |
) -> APIKeyResponse: | |
"""Generate a new API key (requires master key)""" | |
try: | |
new_key = Config.generate_api_key() | |
return APIKeyResponse( | |
api_key=new_key, | |
description=request.description, | |
created_at=datetime.now().isoformat(), | |
status="active" | |
) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error generating API key: {str(e)}") | |
async def validate_api_key_endpoint( | |
api_key: str = Depends(verify_api_key) | |
) -> Dict[str, Any]: | |
"""Validate an API key""" | |
return { | |
"valid": True, | |
"key_type": "master" if api_key == Config.MASTER_KEY else "standard", | |
"validated_at": datetime.now().isoformat() | |
} | |
async def get_rate_limit_status( | |
request: Request, | |
api_key: str = Depends(verify_api_key) | |
) -> Dict[str, Any]: | |
"""Get current rate limit status""" | |
client_ip = request.client.host | |
# Get current minute requests | |
now = datetime.now() | |
minute_key = now.strftime("%Y-%m-%d %H:%M") | |
current_requests = 0 | |
if client_ip in rate_limiter.requests: | |
current_requests = rate_limiter.requests[client_ip].get(minute_key, 0) | |
return { | |
"client_ip": client_ip, | |
"current_requests": current_requests, | |
"limit_per_minute": Config.RATE_LIMIT_PER_MINUTE, | |
"remaining_requests": max(0, Config.RATE_LIMIT_PER_MINUTE - current_requests), | |
"reset_at": f"{minute_key}:00", | |
"is_blocked": client_ip in rate_limiter.blocked_ips | |
} | |
# Admin endpoints for IP management | |
async def block_ip( | |
ip: str, | |
master_key: str = Depends(verify_master_key) | |
) -> Dict[str, str]: | |
"""Block an IP address (requires master key)""" | |
rate_limiter.block_ip(ip) | |
return {"message": f"IP {ip} has been blocked", "blocked_at": datetime.now().isoformat()} | |
async def unblock_ip( | |
ip: str, | |
master_key: str = Depends(verify_master_key) | |
) -> Dict[str, str]: | |
"""Unblock an IP address (requires master key)""" | |
rate_limiter.unblock_ip(ip) | |
return {"message": f"IP {ip} has been unblocked", "unblocked_at": datetime.now().isoformat()} | |
async def get_blocked_ips( | |
master_key: str = Depends(verify_master_key) | |
) -> Dict[str, Any]: | |
"""Get list of blocked IPs (requires master key)""" | |
return { | |
"blocked_ips": list(rate_limiter.blocked_ips), | |
"count": len(rate_limiter.blocked_ips) | |
} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) |