Spaces:
Sleeping
Sleeping
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license | |
""" | |
TensorFlow, Keras and TFLite versions of YOLOv5 | |
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127 | |
Usage: | |
$ python models/tf.py --weights yolov5s.pt | |
Export: | |
$ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs | |
""" | |
import argparse | |
import sys | |
from copy import deepcopy | |
from pathlib import Path | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[1] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
# ROOT = ROOT.relative_to(Path.cwd()) # relative | |
import numpy as np | |
import tensorflow as tf | |
import torch | |
import torch.nn as nn | |
from tensorflow import keras | |
from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv, | |
DWConvTranspose2d, Focus, autopad) | |
from models.experimental import MixConv2d, attempt_load | |
from models.yolo import Detect, Segment | |
from utils.activations import SiLU | |
from utils.general import LOGGER, make_divisible, print_args | |
class TFBN(keras.layers.Layer): | |
# TensorFlow BatchNormalization wrapper | |
def __init__(self, w=None): | |
super().__init__() | |
self.bn = keras.layers.BatchNormalization( | |
beta_initializer=keras.initializers.Constant(w.bias.numpy()), | |
gamma_initializer=keras.initializers.Constant(w.weight.numpy()), | |
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()), | |
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()), | |
epsilon=w.eps) | |
def call(self, inputs): | |
return self.bn(inputs) | |
class TFPad(keras.layers.Layer): | |
# Pad inputs in spatial dimensions 1 and 2 | |
def __init__(self, pad): | |
super().__init__() | |
if isinstance(pad, int): | |
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) | |
else: # tuple/list | |
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]]) | |
def call(self, inputs): | |
return tf.pad(inputs, self.pad, mode='constant', constant_values=0) | |
class TFConv(keras.layers.Layer): | |
# Standard convolution | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): | |
# ch_in, ch_out, weights, kernel, stride, padding, groups | |
super().__init__() | |
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" | |
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding) | |
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch | |
conv = keras.layers.Conv2D( | |
filters=c2, | |
kernel_size=k, | |
strides=s, | |
padding='SAME' if s == 1 else 'VALID', | |
use_bias=not hasattr(w, 'bn'), | |
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), | |
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy())) | |
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) | |
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity | |
self.act = activations(w.act) if act else tf.identity | |
def call(self, inputs): | |
return self.act(self.bn(self.conv(inputs))) | |
class TFDWConv(keras.layers.Layer): | |
# Depthwise convolution | |
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None): | |
# ch_in, ch_out, weights, kernel, stride, padding, groups | |
super().__init__() | |
assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels' | |
conv = keras.layers.DepthwiseConv2D( | |
kernel_size=k, | |
depth_multiplier=c2 // c1, | |
strides=s, | |
padding='SAME' if s == 1 else 'VALID', | |
use_bias=not hasattr(w, 'bn'), | |
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), | |
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy())) | |
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) | |
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity | |
self.act = activations(w.act) if act else tf.identity | |
def call(self, inputs): | |
return self.act(self.bn(self.conv(inputs))) | |
class TFDWConvTranspose2d(keras.layers.Layer): | |
# Depthwise ConvTranspose2d | |
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None): | |
# ch_in, ch_out, weights, kernel, stride, padding, groups | |
super().__init__() | |
assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels' | |
assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1' | |
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy() | |
self.c1 = c1 | |
self.conv = [ | |
keras.layers.Conv2DTranspose(filters=1, | |
kernel_size=k, | |
strides=s, | |
padding='VALID', | |
output_padding=p2, | |
use_bias=True, | |
kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]), | |
bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)] | |
def call(self, inputs): | |
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1] | |
class TFFocus(keras.layers.Layer): | |
# Focus wh information into c-space | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): | |
# ch_in, ch_out, kernel, stride, padding, groups | |
super().__init__() | |
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv) | |
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c) | |
# inputs = inputs / 255 # normalize 0-255 to 0-1 | |
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]] | |
return self.conv(tf.concat(inputs, 3)) | |
class TFBottleneck(keras.layers.Layer): | |
# Standard bottleneck | |
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2) | |
self.add = shortcut and c1 == c2 | |
def call(self, inputs): | |
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) | |
class TFCrossConv(keras.layers.Layer): | |
# Cross Convolution | |
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None): | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1) | |
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2) | |
self.add = shortcut and c1 == c2 | |
def call(self, inputs): | |
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) | |
class TFConv2d(keras.layers.Layer): | |
# Substitution for PyTorch nn.Conv2D | |
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): | |
super().__init__() | |
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" | |
self.conv = keras.layers.Conv2D(filters=c2, | |
kernel_size=k, | |
strides=s, | |
padding='VALID', | |
use_bias=bias, | |
kernel_initializer=keras.initializers.Constant( | |
w.weight.permute(2, 3, 1, 0).numpy()), | |
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None) | |
def call(self, inputs): | |
return self.conv(inputs) | |
class TFBottleneckCSP(keras.layers.Layer): | |
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): | |
# ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2) | |
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3) | |
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4) | |
self.bn = TFBN(w.bn) | |
self.act = lambda x: keras.activations.swish(x) | |
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) | |
def call(self, inputs): | |
y1 = self.cv3(self.m(self.cv1(inputs))) | |
y2 = self.cv2(inputs) | |
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) | |
class TFC3(keras.layers.Layer): | |
# CSP Bottleneck with 3 convolutions | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): | |
# ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) | |
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) | |
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) | |
def call(self, inputs): | |
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) | |
class TFC3x(keras.layers.Layer): | |
# 3 module with cross-convolutions | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): | |
# ch_in, ch_out, number, shortcut, groups, expansion | |
super().__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) | |
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) | |
self.m = keras.Sequential([ | |
TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)]) | |
def call(self, inputs): | |
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) | |
class TFSPP(keras.layers.Layer): | |
# Spatial pyramid pooling layer used in YOLOv3-SPP | |
def __init__(self, c1, c2, k=(5, 9, 13), w=None): | |
super().__init__() | |
c_ = c1 // 2 # hidden channels | |
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) | |
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k] | |
def call(self, inputs): | |
x = self.cv1(inputs) | |
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) | |
class TFSPPF(keras.layers.Layer): | |
# Spatial pyramid pooling-Fast layer | |
def __init__(self, c1, c2, k=5, w=None): | |
super().__init__() | |
c_ = c1 // 2 # hidden channels | |
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) | |
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2) | |
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME') | |
def call(self, inputs): | |
x = self.cv1(inputs) | |
y1 = self.m(x) | |
y2 = self.m(y1) | |
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3)) | |
class TFDetect(keras.layers.Layer): | |
# TF YOLOv5 Detect layer | |
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer | |
super().__init__() | |
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) | |
self.nc = nc # number of classes | |
self.no = nc + 5 # number of outputs per anchor | |
self.nl = len(anchors) # number of detection layers | |
self.na = len(anchors[0]) // 2 # number of anchors | |
self.grid = [tf.zeros(1)] * self.nl # init grid | |
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32) | |
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2]) | |
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] | |
self.training = False # set to False after building model | |
self.imgsz = imgsz | |
for i in range(self.nl): | |
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] | |
self.grid[i] = self._make_grid(nx, ny) | |
def call(self, inputs): | |
z = [] # inference output | |
x = [] | |
for i in range(self.nl): | |
x.append(self.m[i](inputs[i])) | |
# x(bs,20,20,255) to x(bs,3,20,20,85) | |
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] | |
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no]) | |
if not self.training: # inference | |
y = x[i] | |
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5 | |
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4 | |
xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy | |
wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid | |
# Normalize xywh to 0-1 to reduce calibration error | |
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) | |
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) | |
y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1) | |
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no])) | |
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1), ) | |
def _make_grid(nx=20, ny=20): | |
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) | |
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() | |
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) | |
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32) | |
class TFSegment(TFDetect): | |
# YOLOv5 Segment head for segmentation models | |
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None): | |
super().__init__(nc, anchors, ch, imgsz, w) | |
self.nm = nm # number of masks | |
self.npr = npr # number of protos | |
self.no = 5 + nc + self.nm # number of outputs per anchor | |
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv | |
self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos | |
self.detect = TFDetect.call | |
def call(self, x): | |
p = self.proto(x[0]) | |
# p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos | |
p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160) | |
x = self.detect(self, x) | |
return (x, p) if self.training else (x[0], p) | |
class TFProto(keras.layers.Layer): | |
def __init__(self, c1, c_=256, c2=32, w=None): | |
super().__init__() | |
self.cv1 = TFConv(c1, c_, k=3, w=w.cv1) | |
self.upsample = TFUpsample(None, scale_factor=2, mode='nearest') | |
self.cv2 = TFConv(c_, c_, k=3, w=w.cv2) | |
self.cv3 = TFConv(c_, c2, w=w.cv3) | |
def call(self, inputs): | |
return self.cv3(self.cv2(self.upsample(self.cv1(inputs)))) | |
class TFUpsample(keras.layers.Layer): | |
# TF version of torch.nn.Upsample() | |
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w' | |
super().__init__() | |
assert scale_factor % 2 == 0, 'scale_factor must be multiple of 2' | |
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode) | |
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode) | |
# with default arguments: align_corners=False, half_pixel_centers=False | |
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x, | |
# size=(x.shape[1] * 2, x.shape[2] * 2)) | |
def call(self, inputs): | |
return self.upsample(inputs) | |
class TFConcat(keras.layers.Layer): | |
# TF version of torch.concat() | |
def __init__(self, dimension=1, w=None): | |
super().__init__() | |
assert dimension == 1, 'convert only NCHW to NHWC concat' | |
self.d = 3 | |
def call(self, inputs): | |
return tf.concat(inputs, self.d) | |
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3) | |
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") | |
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] | |
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors | |
no = na * (nc + 5) # number of outputs = anchors * (classes + 5) | |
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out | |
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args | |
m_str = m | |
m = eval(m) if isinstance(m, str) else m # eval strings | |
for j, a in enumerate(args): | |
try: | |
args[j] = eval(a) if isinstance(a, str) else a # eval strings | |
except NameError: | |
pass | |
n = max(round(n * gd), 1) if n > 1 else n # depth gain | |
if m in [ | |
nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv, | |
BottleneckCSP, C3, C3x]: | |
c1, c2 = ch[f], args[0] | |
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 | |
args = [c1, c2, *args[1:]] | |
if m in [BottleneckCSP, C3, C3x]: | |
args.insert(2, n) | |
n = 1 | |
elif m is nn.BatchNorm2d: | |
args = [ch[f]] | |
elif m is Concat: | |
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) | |
elif m in [Detect, Segment]: | |
args.append([ch[x + 1] for x in f]) | |
if isinstance(args[1], int): # number of anchors | |
args[1] = [list(range(args[1] * 2))] * len(f) | |
if m is Segment: | |
args[3] = make_divisible(args[3] * gw, 8) | |
args.append(imgsz) | |
else: | |
c2 = ch[f] | |
tf_m = eval('TF' + m_str.replace('nn.', '')) | |
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \ | |
else tf_m(*args, w=model.model[i]) # module | |
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module | |
t = str(m)[8:-2].replace('__main__.', '') # module type | |
np = sum(x.numel() for x in torch_m_.parameters()) # number params | |
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params | |
LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print | |
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist | |
layers.append(m_) | |
ch.append(c2) | |
return keras.Sequential(layers), sorted(save) | |
class TFModel: | |
# TF YOLOv5 model | |
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes | |
super().__init__() | |
if isinstance(cfg, dict): | |
self.yaml = cfg # model dict | |
else: # is *.yaml | |
import yaml # for torch hub | |
self.yaml_file = Path(cfg).name | |
with open(cfg) as f: | |
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict | |
# Define model | |
if nc and nc != self.yaml['nc']: | |
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}") | |
self.yaml['nc'] = nc # override yaml value | |
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz) | |
def predict(self, | |
inputs, | |
tf_nms=False, | |
agnostic_nms=False, | |
topk_per_class=100, | |
topk_all=100, | |
iou_thres=0.45, | |
conf_thres=0.25): | |
y = [] # outputs | |
x = inputs | |
for m in self.model.layers: | |
if m.f != -1: # if not from previous layer | |
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers | |
x = m(x) # run | |
y.append(x if m.i in self.savelist else None) # save output | |
# Add TensorFlow NMS | |
if tf_nms: | |
boxes = self._xywh2xyxy(x[0][..., :4]) | |
probs = x[0][:, :, 4:5] | |
classes = x[0][:, :, 5:] | |
scores = probs * classes | |
if agnostic_nms: | |
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres) | |
else: | |
boxes = tf.expand_dims(boxes, 2) | |
nms = tf.image.combined_non_max_suppression(boxes, | |
scores, | |
topk_per_class, | |
topk_all, | |
iou_thres, | |
conf_thres, | |
clip_boxes=False) | |
return (nms, ) | |
return x # output [1,6300,85] = [xywh, conf, class0, class1, ...] | |
# x = x[0] # [x(1,6300,85), ...] to x(6300,85) | |
# xywh = x[..., :4] # x(6300,4) boxes | |
# conf = x[..., 4:5] # x(6300,1) confidences | |
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes | |
# return tf.concat([conf, cls, xywh], 1) | |
def _xywh2xyxy(xywh): | |
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right | |
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) | |
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) | |
class AgnosticNMS(keras.layers.Layer): | |
# TF Agnostic NMS | |
def call(self, input, topk_all, iou_thres, conf_thres): | |
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450 | |
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), | |
input, | |
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), | |
name='agnostic_nms') | |
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS | |
boxes, classes, scores = x | |
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) | |
scores_inp = tf.reduce_max(scores, -1) | |
selected_inds = tf.image.non_max_suppression(boxes, | |
scores_inp, | |
max_output_size=topk_all, | |
iou_threshold=iou_thres, | |
score_threshold=conf_thres) | |
selected_boxes = tf.gather(boxes, selected_inds) | |
padded_boxes = tf.pad(selected_boxes, | |
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]], | |
mode='CONSTANT', | |
constant_values=0.0) | |
selected_scores = tf.gather(scores_inp, selected_inds) | |
padded_scores = tf.pad(selected_scores, | |
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], | |
mode='CONSTANT', | |
constant_values=-1.0) | |
selected_classes = tf.gather(class_inds, selected_inds) | |
padded_classes = tf.pad(selected_classes, | |
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], | |
mode='CONSTANT', | |
constant_values=-1.0) | |
valid_detections = tf.shape(selected_inds)[0] | |
return padded_boxes, padded_scores, padded_classes, valid_detections | |
def activations(act=nn.SiLU): | |
# Returns TF activation from input PyTorch activation | |
if isinstance(act, nn.LeakyReLU): | |
return lambda x: keras.activations.relu(x, alpha=0.1) | |
elif isinstance(act, nn.Hardswish): | |
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667 | |
elif isinstance(act, (nn.SiLU, SiLU)): | |
return lambda x: keras.activations.swish(x) | |
else: | |
raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}') | |
def representative_dataset_gen(dataset, ncalib=100): | |
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays | |
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): | |
im = np.transpose(img, [1, 2, 0]) | |
im = np.expand_dims(im, axis=0).astype(np.float32) | |
im /= 255 | |
yield [im] | |
if n >= ncalib: | |
break | |
def run( | |
weights=ROOT / 'yolov5s.pt', # weights path | |
imgsz=(640, 640), # inference size h,w | |
batch_size=1, # batch size | |
dynamic=False, # dynamic batch size | |
): | |
# PyTorch model | |
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image | |
model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False) | |
_ = model(im) # inference | |
model.info() | |
# TensorFlow model | |
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image | |
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) | |
_ = tf_model.predict(im) # inference | |
# Keras model | |
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) | |
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im)) | |
keras_model.summary() | |
LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.') | |
def parse_opt(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') | |
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') | |
parser.add_argument('--batch-size', type=int, default=1, help='batch size') | |
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size') | |
opt = parser.parse_args() | |
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand | |
print_args(vars(opt)) | |
return opt | |
def main(opt): | |
run(**vars(opt)) | |
if __name__ == '__main__': | |
opt = parse_opt() | |
main(opt) | |