Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import subprocess | |
import torch | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Process a checkpoint to be published') | |
parser.add_argument('in_file', help='input checkpoint filename') | |
parser.add_argument('out_file', help='output checkpoint filename') | |
args = parser.parse_args() | |
return args | |
def process_checkpoint(in_file, out_file): | |
checkpoint = torch.load(in_file, map_location='cpu') | |
# remove optimizer for smaller file size | |
if 'optimizer' in checkpoint: | |
del checkpoint['optimizer'] | |
if 'message_hub' in checkpoint: | |
del checkpoint['message_hub'] | |
if 'ema_state_dict' in checkpoint: | |
del checkpoint['ema_state_dict'] | |
for key in list(checkpoint['state_dict']): | |
if key.startswith('data_preprocessor'): | |
checkpoint['state_dict'].pop(key) | |
elif 'priors_base_sizes' in key: | |
checkpoint['state_dict'].pop(key) | |
elif 'grid_offset' in key: | |
checkpoint['state_dict'].pop(key) | |
elif 'prior_inds' in key: | |
checkpoint['state_dict'].pop(key) | |
if torch.__version__ >= '1.6': | |
torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False) | |
else: | |
torch.save(checkpoint, out_file) | |
sha = subprocess.check_output(['sha256sum', out_file]).decode() | |
if out_file.endswith('.pth'): | |
out_file_name = out_file[:-4] | |
else: | |
out_file_name = out_file | |
final_file = out_file_name + f'-{sha[:8]}.pth' | |
subprocess.Popen(['mv', out_file, final_file]) | |
def main(): | |
args = parse_args() | |
process_checkpoint(args.in_file, args.out_file) | |
if __name__ == '__main__': | |
main() | |