Spaces:
Running
on
Zero
Running
on
Zero
add HTML renders (#2)
Browse files- add html rendering (eaedd343fb7a8659e5b2bc25015121ce6f839c01)
- add latex display (fc2b70dc3a6292b1061737e74496aa30814fae38)
Co-authored-by: Joseph Pollack <Tonic@users.noreply.huggingface.co>
- app.py +71 -30
- requirements.txt +3 -1
app.py
CHANGED
@@ -4,36 +4,72 @@ from transformers import AutoModel, AutoTokenizer
|
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
9 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
|
10 |
model = model.eval().cuda()
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
@spaces.GPU
|
14 |
-
def run_GOT(
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def task_update(task):
|
39 |
if "fine-grained" in task:
|
@@ -61,6 +97,12 @@ def fine_grained_update(task):
|
|
61 |
gr.update(visible=False, value = ""),
|
62 |
]
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
title_html = """
|
66 |
<h2> <span class="gradient-text" id="text">General OCR Theory</span><span class="plain-text">: Towards OCR-2.0 via a Unified End-to-end Model</span></h2>
|
@@ -75,7 +117,6 @@ with gr.Blocks() as demo:
|
|
75 |
"🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!"
|
76 |
|
77 |
### Demo Guidelines
|
78 |
-
|
79 |
You need to upload your image below and choose one mode of GOT, then click "Submit" to run GOT model. More characters will result in longer wait times.
|
80 |
- **plain texts OCR & format texts OCR**: The two modes are for the image-level OCR.
|
81 |
- **plain multi-crop OCR & format multi-crop OCR**: For images with more complex content, you can achieve higher-quality results with these modes.
|
@@ -115,12 +156,10 @@ with gr.Blocks() as demo:
|
|
115 |
submit_button = gr.Button("Submit")
|
116 |
|
117 |
with gr.Column():
|
118 |
-
ocr_result = gr.
|
119 |
-
|
120 |
|
121 |
with gr.Column():
|
122 |
-
html_result = gr.HTML(
|
123 |
-
label="rendered html", show_label=True)
|
124 |
|
125 |
gr.Examples(
|
126 |
examples=[
|
@@ -134,7 +173,7 @@ with gr.Blocks() as demo:
|
|
134 |
],
|
135 |
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
|
136 |
outputs=[ocr_result, html_result],
|
137 |
-
fn
|
138 |
label="examples",
|
139 |
)
|
140 |
|
@@ -155,4 +194,6 @@ with gr.Blocks() as demo:
|
|
155 |
outputs=[ocr_result, html_result]
|
156 |
)
|
157 |
|
158 |
-
|
|
|
|
|
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
import os
|
7 |
+
import base64
|
8 |
+
import io
|
9 |
+
import uuid
|
10 |
+
import tempfile
|
11 |
+
import time
|
12 |
+
import shutil
|
13 |
+
from pathlib import Path
|
14 |
|
15 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
16 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
|
17 |
model = model.eval().cuda()
|
18 |
+
|
19 |
+
UPLOAD_FOLDER = "./uploads"
|
20 |
+
RESULTS_FOLDER = "./results"
|
21 |
+
|
22 |
+
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
|
23 |
+
if not os.path.exists(folder):
|
24 |
+
os.makedirs(folder)
|
25 |
+
|
26 |
+
def image_to_base64(image):
|
27 |
+
buffered = io.BytesIO()
|
28 |
+
image.save(buffered, format="PNG")
|
29 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
30 |
|
31 |
@spaces.GPU
|
32 |
+
def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
|
33 |
+
unique_id = str(uuid.uuid4())
|
34 |
+
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
|
35 |
+
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
|
36 |
+
|
37 |
+
shutil.copy(image, image_path)
|
38 |
+
|
39 |
+
try:
|
40 |
+
if got_mode == "plain texts OCR":
|
41 |
+
res = model.chat(tokenizer, image_path, ocr_type='ocr')
|
42 |
+
return res, None
|
43 |
+
elif got_mode == "format texts OCR":
|
44 |
+
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
|
45 |
+
elif got_mode == "plain multi-crop OCR":
|
46 |
+
res = model.chat_crop(tokenizer, image_path, ocr_type='ocr')
|
47 |
+
return res, None
|
48 |
+
elif got_mode == "format multi-crop OCR":
|
49 |
+
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
|
50 |
+
elif got_mode == "plain fine-grained OCR":
|
51 |
+
res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color)
|
52 |
+
return res, None
|
53 |
+
elif got_mode == "format fine-grained OCR":
|
54 |
+
res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
|
55 |
+
|
56 |
+
res_markdown = f"$$ {res} $$"
|
57 |
|
58 |
+
if "format" in got_mode and os.path.exists(result_path):
|
59 |
+
with open(result_path, 'r') as f:
|
60 |
+
html_content = f.read()
|
61 |
+
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
|
62 |
+
iframe_src = f"data:text/html;base64,{encoded_html}"
|
63 |
+
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
|
64 |
+
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
|
65 |
+
return res_markdown, f"{download_link}<br>{iframe}"
|
66 |
+
else:
|
67 |
+
return res_markdown, None
|
68 |
+
except Exception as e:
|
69 |
+
return f"Error: {str(e)}", None
|
70 |
+
finally:
|
71 |
+
if os.path.exists(image_path):
|
72 |
+
os.remove(image_path)
|
73 |
|
74 |
def task_update(task):
|
75 |
if "fine-grained" in task:
|
|
|
97 |
gr.update(visible=False, value = ""),
|
98 |
]
|
99 |
|
100 |
+
def cleanup_old_files():
|
101 |
+
current_time = time.time()
|
102 |
+
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
|
103 |
+
for file_path in Path(folder).glob('*'):
|
104 |
+
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
|
105 |
+
file_path.unlink()
|
106 |
|
107 |
title_html = """
|
108 |
<h2> <span class="gradient-text" id="text">General OCR Theory</span><span class="plain-text">: Towards OCR-2.0 via a Unified End-to-end Model</span></h2>
|
|
|
117 |
"🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!"
|
118 |
|
119 |
### Demo Guidelines
|
|
|
120 |
You need to upload your image below and choose one mode of GOT, then click "Submit" to run GOT model. More characters will result in longer wait times.
|
121 |
- **plain texts OCR & format texts OCR**: The two modes are for the image-level OCR.
|
122 |
- **plain multi-crop OCR & format multi-crop OCR**: For images with more complex content, you can achieve higher-quality results with these modes.
|
|
|
156 |
submit_button = gr.Button("Submit")
|
157 |
|
158 |
with gr.Column():
|
159 |
+
ocr_result = gr.Markdown(label="GOT output")
|
|
|
160 |
|
161 |
with gr.Column():
|
162 |
+
html_result = gr.HTML(label="rendered html", show_label=True)
|
|
|
163 |
|
164 |
gr.Examples(
|
165 |
examples=[
|
|
|
173 |
],
|
174 |
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
|
175 |
outputs=[ocr_result, html_result],
|
176 |
+
fn=run_GOT,
|
177 |
label="examples",
|
178 |
)
|
179 |
|
|
|
194 |
outputs=[ocr_result, html_result]
|
195 |
)
|
196 |
|
197 |
+
if __name__ == "__main__":
|
198 |
+
cleanup_old_files()
|
199 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -6,4 +6,6 @@ tiktoken
|
|
6 |
verovio
|
7 |
opencv-python
|
8 |
accelerate
|
9 |
-
numpy==1.26.4
|
|
|
|
|
|
6 |
verovio
|
7 |
opencv-python
|
8 |
accelerate
|
9 |
+
numpy==1.26.4
|
10 |
+
shutils
|
11 |
+
pillow
|