stefan-it commited on
Commit
b73474b
1 Parent(s): bbdc2cf

app: add initial version

Browse files
Files changed (1) hide show
  1. app.py +115 -0
app.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+
4
+ title = """
5
+ # hmLeaderboard
6
+
7
+ ![hmLeaderboard](logo.png)
8
+ """
9
+
10
+ description = """
11
+ ## Space for tracking and ranking models on Historic NER Datasets.
12
+
13
+ At the moment the following models are supported:
14
+
15
+ * hmBERT: [Historical Multilingual Language Models for Named Entity Recognition](https://huggingface.co/hmbert).
16
+ * hmTEAMS: [Historic Multilingual TEAMS Models](https://huggingface.co/hmteams).
17
+ """
18
+ footer = "Made from Bavarian Oberland with ❤️ and 🥨."
19
+
20
+ model_selection_file_names = {
21
+ "Best Configuration": "best_model_configurations.csv",
22
+ "Best Model": "best_models.csv"
23
+ }
24
+
25
+ df_init = pd.read_csv(model_selection_file_names["Best Configuration"])
26
+ dataset_names = df_init.columns.values[1:].tolist()
27
+ languages = list(set([dataset_name.split(" ")[0] for dataset_name in dataset_names]))
28
+
29
+
30
+ def perform_evaluation_for_datasets(model_selection, selected_datasets):
31
+ df = pd.read_csv(model_selection_file_names.get(model_selection))
32
+
33
+ selected_indices = []
34
+
35
+ for selected_dataset in selected_datasets:
36
+ selected_indices.append(dataset_names.index(selected_dataset) + 1)
37
+
38
+ mean_column = df.iloc[:, selected_indices].mean(axis=1).round(2)
39
+
40
+ # Include column with column name
41
+ result_df = df.iloc[:, [0] + selected_indices]
42
+ result_df["Average"] = mean_column
43
+
44
+ return result_df
45
+
46
+ def perform_evaluation_for_languages(model_selection, selected_languages):
47
+ df = pd.read_csv(model_selection_file_names.get(model_selection))
48
+
49
+ selected_indices = []
50
+
51
+ for selected_language in selected_languages:
52
+ selected_language = selected_language.lower()
53
+ found_indices = [i for i, column_name in enumerate(df.columns) if selected_language in column_name.lower()]
54
+
55
+ for found_index in found_indices:
56
+ selected_indices.append(found_index)
57
+
58
+ mean_column = df.iloc[:, selected_indices].mean(axis=1).round(2)
59
+
60
+ # Include column with column name
61
+ result_df = df.iloc[:, [0] + selected_indices]
62
+ result_df["Average"] = mean_column
63
+
64
+ return result_df
65
+
66
+ with gr.Blocks() as demo:
67
+ gr.Markdown(title)
68
+ gr.Markdown(description)
69
+
70
+ with gr.Tab("Overview"):
71
+ gr.Markdown("### Best Configuration\nThe best hyper-parameter configuration for each model is used and average F1-score over runs with different seeds is reported here:")
72
+
73
+ df_result = perform_evaluation_for_datasets("Best Configuration", dataset_names)
74
+
75
+ gr.Dataframe(value=df_result)
76
+
77
+ gr.Markdown("### Best Model\nThe best hyper-parameter configuration for each model is used and the model with highest F1-score is used and its performance is reported here:")
78
+
79
+ df_result = perform_evaluation_for_datasets("Best Model", dataset_names)
80
+
81
+ gr.Dataframe(value=df_result)
82
+
83
+ with gr.Tab("Filtering"):
84
+
85
+ gr.Markdown("### Filtering\nSwiss-knife filtering for single datasets and languages is possible.")
86
+
87
+ model_selection = gr.Radio(choices=["Best Configuration", "Best Model"],
88
+ label="Model Selection",
89
+ info="Defines if best configuration or best model should be used for evaluation. When 'Best Configuration' is used, the best hyper-parameter configuration is used and then averaged F1-score over all runs is calculated. When 'Best Model' is chosen, the best hyper-parameter configuration and model with highest F1-score on development dataset is used (best model).",
90
+ value="Best Configuration")
91
+
92
+ with gr.Tab("Dataset Selection"):
93
+ datasets_selection = gr.CheckboxGroup(
94
+ dataset_names, label="Datasets", info="Select datasets for evaluation"
95
+ )
96
+ output_df = gr.Dataframe()
97
+
98
+ evaluation_button = gr.Button("Evaluate")
99
+ evaluation_button.click(fn=perform_evaluation_for_datasets, inputs=[model_selection, datasets_selection], outputs=output_df)
100
+
101
+
102
+ with gr.Tab("Language Selection"):
103
+ language_selection = gr.CheckboxGroup(
104
+ languages, label="Languages", info="Select languages for evaluation"
105
+ )
106
+ output_df = gr.Dataframe()
107
+
108
+ evaluation_button = gr.Button("Evaluate")
109
+ evaluation_button.click(fn=perform_evaluation_for_languages, inputs=[model_selection, language_selection], outputs=output_df)
110
+
111
+
112
+
113
+ gr.Markdown(footer)
114
+
115
+ demo.launch()