multimodalart HF staff commited on
Commit
3454951
1 Parent(s): e6c770e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -29,15 +29,17 @@ pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.float16, rev
29
  pipe = pipe.to(device)
30
  pipe.enable_xformers_memory_efficient_attention()
31
 
32
- #If you have duplicated this Space or is running locally, you can remove this part
33
- word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
34
- word_list = word_list_dataset["train"]['text']
35
-
 
36
  def infer(prompt, samples, steps, scale, seed):
37
- #If you have duplicated this Space or is running locally, you can remove this part
38
- for filter in word_list:
39
- if re.search(rf"\b{filter}\b", prompt):
40
- raise gr.Error("Unsafe content found. Please try again with different prompts.")
 
41
  generator = torch.Generator(device=device).manual_seed(seed)
42
  images = pipe(prompt, width=768, height=768, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=samples, generator=generator).images
43
  images_watermarked = []
 
29
  pipe = pipe.to(device)
30
  pipe.enable_xformers_memory_efficient_attention()
31
 
32
+ #If you have duplicated this Space or is running locally, you can remove this snippet
33
+ if "HUGGING_FACE_HUB_TOKEN" in os.environ:
34
+ word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True)
35
+ word_list = word_list_dataset["train"]['text']
36
+
37
  def infer(prompt, samples, steps, scale, seed):
38
+ #If you have duplicated this Space or is running locally, you can remove this snippet
39
+ if "HUGGING_FACE_HUB_TOKEN" in os.environ:
40
+ for filter in word_list:
41
+ if re.search(rf"\b{filter}\b", prompt):
42
+ raise gr.Error("Unsafe content found. Please try again with different prompts.")
43
  generator = torch.Generator(device=device).manual_seed(seed)
44
  images = pipe(prompt, width=768, height=768, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=samples, generator=generator).images
45
  images_watermarked = []