|
import gradio as gr |
|
from tqdm import tqdm |
|
import requests |
|
import os |
|
|
|
def ensure_file(filename, src): |
|
if not os.path.exists(filename): |
|
response = requests.get(src, stream=True) |
|
total_size = int(response.headers.get('content-length', 0)) |
|
|
|
with open(filename, 'wb') as file: |
|
with tqdm(total=total_size, unit='B', unit_scale=True, desc=filename, ncols=80) as progress_bar: |
|
for data in response.iter_content(chunk_size=1024): |
|
if data: |
|
file.write(data) |
|
progress_bar.update(len(data)) |
|
|
|
print(f"Download completed.") |
|
|
|
ensure_file("mmproj-model-f16.gguf", "https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/mmproj-model-f16.gguf") |
|
ensure_file("ggml-model-q4_k.gguf", "https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/ggml-model-q4_k.gguf") |
|
|
|
import ctypes |
|
import json |
|
import argparse |
|
import os |
|
import array |
|
import sys |
|
|
|
from llama_cpp import (Llama, clip_model_load, llava_image_embed_make_with_filename, llava_image_embed_make_with_bytes, |
|
llava_image_embed_p, llava_image_embed_free, llava_validate_embed_size, llava_eval_image_embed) |
|
|
|
ctx_clip = clip_model_load("mmproj-model-f16.gguf".encode('utf-8')) |
|
llm = Llama(model_path="ggml-model-q4_k.gguf", n_ctx=2048) |
|
|
|
def generate(image, ins="The image shows"): |
|
if len(ins) < 1: |
|
ins = "The image shows" |
|
image_embed = llava_image_embed_make_with_filename(ctx_clip=ctx_clip, n_threads=1, filename=image.encode('utf8')) |
|
|
|
n_past = ctypes.c_int(llm.n_tokens) |
|
n_past_p = ctypes.byref(n_past) |
|
llava_eval_image_embed(llm.ctx, image_embed, llm.n_batch, n_past_p) |
|
llm.n_tokens = n_past.value |
|
llava_image_embed_free(image_embed) |
|
|
|
llm.eval(llm.tokenize(ins.encode('utf8'))) |
|
|
|
max_target_len = 256 |
|
res = "" |
|
for i in range(max_target_len): |
|
t_id = llm.sample(temp=0.1) |
|
t = llm.detokenize([t_id]).decode('utf8') |
|
if t == "</s>": |
|
break |
|
res += t |
|
llm.eval([t_id]) |
|
|
|
return res |
|
|
|
iface = gr.Interface(generate, inputs=[gr.Image(type="filepath"), gr.Textbox()], outputs="text") |
|
iface.launch() |