Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tqdm import tqdm
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
|
6 |
+
def ensure_file(filename, src):
|
7 |
+
if not os.path.exists(filename):
|
8 |
+
response = requests.get(src, stream=True)
|
9 |
+
total_size = int(response.headers.get('content-length', 0))
|
10 |
+
|
11 |
+
with open(filename, 'wb') as file:
|
12 |
+
with tqdm(total=total_size, unit='B', unit_scale=True, desc=filename, ncols=80) as progress_bar:
|
13 |
+
for data in response.iter_content(chunk_size=1024):
|
14 |
+
if data:
|
15 |
+
file.write(data)
|
16 |
+
progress_bar.update(len(data))
|
17 |
+
|
18 |
+
print(f"Download completed.")
|
19 |
+
|
20 |
+
ensure_file("mmproj-model-f16.gguf", "https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/mmproj-model-f16.gguf")
|
21 |
+
ensure_file("ggml-model-q4_k.gguf", "https://huggingface.co/mys/ggml_llava-v1.5-7b/resolve/main/ggml-model-q4_k.gguf")
|
22 |
+
|
23 |
+
import ctypes
|
24 |
+
import json
|
25 |
+
import argparse
|
26 |
+
import os
|
27 |
+
import array
|
28 |
+
import sys
|
29 |
+
|
30 |
+
from llama_cpp import (Llama, clip_model_load, llava_image_embed_make_with_filename, llava_image_embed_make_with_bytes,
|
31 |
+
llava_image_embed_p, llava_image_embed_free, llava_validate_embed_size, llava_eval_image_embed)
|
32 |
+
|
33 |
+
ctx_clip = clip_model_load("mmproj-model-f16.gguf".encode('utf-8'))
|
34 |
+
llm = Llama(model_path="ggml-model-q4_k.gguf", n_ctx=2048)
|
35 |
+
|
36 |
+
def generate(image, ins="The image shows"):
|
37 |
+
if len(ins) < 1:
|
38 |
+
ins = "The image shows"
|
39 |
+
image_embed = llava_image_embed_make_with_filename(ctx_clip=ctx_clip, n_threads=1, filename=image.encode('utf8'))
|
40 |
+
|
41 |
+
n_past = ctypes.c_int(llm.n_tokens)
|
42 |
+
n_past_p = ctypes.byref(n_past)
|
43 |
+
llava_eval_image_embed(llm.ctx, image_embed, llm.n_batch, n_past_p)
|
44 |
+
llm.n_tokens = n_past.value
|
45 |
+
llava_image_embed_free(image_embed)
|
46 |
+
|
47 |
+
llm.eval(llm.tokenize(ins.encode('utf8')))
|
48 |
+
|
49 |
+
max_target_len = 256
|
50 |
+
res = ""
|
51 |
+
for i in range(max_target_len):
|
52 |
+
t_id = llm.sample(temp=0.1)
|
53 |
+
t = llm.detokenize([t_id]).decode('utf8')
|
54 |
+
if t == "</s>":
|
55 |
+
break
|
56 |
+
res += t
|
57 |
+
llm.eval([t_id])
|
58 |
+
|
59 |
+
return res
|
60 |
+
|
61 |
+
iface = gr.Interface(generate, inputs=[gr.Image(type="filepath"), gr.Textbox()], outputs="text")
|
62 |
+
iface.launch()
|