Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
rank
Browse files- src/display/utils.py +1 -0
- src/populate.py +3 -0
src/display/utils.py
CHANGED
@@ -52,6 +52,7 @@ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Avai
|
|
52 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
53 |
# Dummy column for the search bar (hidden by the custom CSS)
|
54 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
|
|
55 |
|
56 |
# We use make dataclass to dynamically fill the scores from Tasks
|
57 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
52 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
53 |
# Dummy column for the search bar (hidden by the custom CSS)
|
54 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
55 |
+
auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("rank", "number", True)])
|
56 |
|
57 |
# We use make dataclass to dynamically fill the scores from Tasks
|
58 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/populate.py
CHANGED
@@ -18,6 +18,9 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
18 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
19 |
df = df[cols].round(decimals=2)
|
20 |
|
|
|
|
|
|
|
21 |
# filter out if any of the benchmarks have not been produced
|
22 |
#df2 = df[has_no_nan_values(df, benchmark_cols)]
|
23 |
return raw_data, df
|
|
|
18 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
19 |
df = df[cols].round(decimals=2)
|
20 |
|
21 |
+
# add column rank to df
|
22 |
+
df["rank"] = df[AutoEvalColumn.average.name].rank(ascending=False, method="min")
|
23 |
+
|
24 |
# filter out if any of the benchmarks have not been produced
|
25 |
#df2 = df[has_no_nan_values(df, benchmark_cols)]
|
26 |
return raw_data, df
|