Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
Clémentine
commited on
Commit
·
217b585
1
Parent(s):
4aff44e
wip adding symbols to model types
Browse files- app.py +11 -0
- src/assets/text_content.py +3 -2
- src/auto_leaderboard/model_metadata_type.py +25 -8
- src/utils_display.py +5 -4
app.py
CHANGED
@@ -179,6 +179,7 @@ def add_new_eval(
|
|
179 |
precision: str,
|
180 |
private: bool,
|
181 |
weight_type: str,
|
|
|
182 |
):
|
183 |
precision = precision.split(" ")[0]
|
184 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
@@ -209,6 +210,7 @@ def add_new_eval(
|
|
209 |
"weight_type": weight_type,
|
210 |
"status": "PENDING",
|
211 |
"submitted_time": current_time,
|
|
|
212 |
}
|
213 |
|
214 |
user_name = ""
|
@@ -396,6 +398,14 @@ with demo:
|
|
396 |
max_choices=1,
|
397 |
interactive=True,
|
398 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
weight_type = gr.Dropdown(
|
400 |
choices=["Original", "Delta", "Adapter"],
|
401 |
label="Weights type",
|
@@ -419,6 +429,7 @@ with demo:
|
|
419 |
precision,
|
420 |
private,
|
421 |
weight_type,
|
|
|
422 |
],
|
423 |
submission_result,
|
424 |
)
|
|
|
179 |
precision: str,
|
180 |
private: bool,
|
181 |
weight_type: str,
|
182 |
+
model_type: str,
|
183 |
):
|
184 |
precision = precision.split(" ")[0]
|
185 |
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
|
|
210 |
"weight_type": weight_type,
|
211 |
"status": "PENDING",
|
212 |
"submitted_time": current_time,
|
213 |
+
"model_type": model_type,
|
214 |
}
|
215 |
|
216 |
user_name = ""
|
|
|
398 |
max_choices=1,
|
399 |
interactive=True,
|
400 |
)
|
401 |
+
model_type = gr.Dropdown(
|
402 |
+
choices=["pretrained", "fine-tuned", "with RL"],
|
403 |
+
label="Model type",
|
404 |
+
multiselect=False,
|
405 |
+
value="pretrained",
|
406 |
+
max_choices=1,
|
407 |
+
interactive=True,
|
408 |
+
)
|
409 |
weight_type = gr.Dropdown(
|
410 |
choices=["Original", "Delta", "Adapter"],
|
411 |
label="Weights type",
|
|
|
429 |
precision,
|
430 |
private,
|
431 |
weight_type,
|
432 |
+
model_type
|
433 |
],
|
434 |
submission_result,
|
435 |
)
|
src/assets/text_content.py
CHANGED
@@ -75,6 +75,7 @@ With the plethora of large language models (LLMs) and chatbots being released we
|
|
75 |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
76 |
- <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online. Note: TruthfulQA in the Harness is actually a minima a 6-shots task, as it is prepended by 6 examples systematically, even when launched using 0 for the number of few-shot examples.
|
77 |
|
|
|
78 |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
|
79 |
|
80 |
# Some good practices before submitting a model
|
@@ -140,13 +141,13 @@ These models will be automatically evaluated on the 🤗 cluster.
|
|
140 |
"""
|
141 |
|
142 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
143 |
-
CITATION_BUTTON_TEXT = r"""
|
|
|
144 |
author = {Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf},
|
145 |
title = {Open LLM Leaderboard},
|
146 |
year = {2023},
|
147 |
publisher = {Hugging Face},
|
148 |
howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
|
149 |
-
|
150 |
}
|
151 |
@software{eval-harness,
|
152 |
author = {Gao, Leo and
|
|
|
75 |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
76 |
- <a href="https://arxiv.org/abs/2109.07958" target="_blank"> TruthfulQA </a> (0-shot) - a test to measure a model’s propensity to reproduce falsehoods commonly found online. Note: TruthfulQA in the Harness is actually a minima a 6-shots task, as it is prepended by 6 examples systematically, even when launched using 0 for the number of few-shot examples.
|
77 |
|
78 |
+
For all these evaluations, a higher score is a better score.
|
79 |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
|
80 |
|
81 |
# Some good practices before submitting a model
|
|
|
141 |
"""
|
142 |
|
143 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
144 |
+
CITATION_BUTTON_TEXT = r"""
|
145 |
+
@misc{open-llm-leaderboard,
|
146 |
author = {Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf},
|
147 |
title = {Open LLM Leaderboard},
|
148 |
year = {2023},
|
149 |
publisher = {Hugging Face},
|
150 |
howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
|
|
|
151 |
}
|
152 |
@software{eval-harness,
|
153 |
author = {Gao, Leo and
|
src/auto_leaderboard/model_metadata_type.py
CHANGED
@@ -1,10 +1,17 @@
|
|
|
|
1 |
from enum import Enum
|
2 |
from typing import Dict, List
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
class ModelType(Enum):
|
5 |
-
PT = "pretrained"
|
6 |
-
SFT = "finetuned"
|
7 |
-
RL = "with RL"
|
8 |
|
9 |
|
10 |
TYPE_METADATA: Dict[str, ModelType] = {
|
@@ -160,13 +167,23 @@ TYPE_METADATA: Dict[str, ModelType] = {
|
|
160 |
|
161 |
def get_model_type(leaderboard_data: List[dict]):
|
162 |
for model_data in leaderboard_data:
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
if any([i in model_data["model_name_for_query"] for i in ["finetuned", "-ft-"]]):
|
166 |
-
model_data["Type"] = ModelType.SFT
|
|
|
167 |
elif any([i in model_data["model_name_for_query"] for i in ["pretrained"]]):
|
168 |
-
model_data["Type"] = ModelType.PT
|
|
|
169 |
elif any([i in model_data["model_name_for_query"] for i in ["-rl-", "-rlhf-"]]):
|
170 |
-
model_data["Type"] = ModelType.RL
|
|
|
171 |
|
172 |
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
from enum import Enum
|
3 |
from typing import Dict, List
|
4 |
|
5 |
+
@dataclass
|
6 |
+
class ModelInfo:
|
7 |
+
name: str
|
8 |
+
symbol: str # emoji
|
9 |
+
|
10 |
+
|
11 |
class ModelType(Enum):
|
12 |
+
PT = ModelInfo(name="pretrained", symbol="🟢")
|
13 |
+
SFT = ModelInfo(name="finetuned", symbol="🔶")
|
14 |
+
RL = ModelInfo(name="with RL", symbol="🟦")
|
15 |
|
16 |
|
17 |
TYPE_METADATA: Dict[str, ModelType] = {
|
|
|
167 |
|
168 |
def get_model_type(leaderboard_data: List[dict]):
|
169 |
for model_data in leaderboard_data:
|
170 |
+
# Init
|
171 |
+
model_data["Type name"] = "N/A"
|
172 |
+
model_data["Type"] = ""
|
173 |
+
|
174 |
+
# Stored information
|
175 |
+
if model_data["model_name_for_query"] in TYPE_METADATA:
|
176 |
+
model_data["Type name"] = TYPE_METADATA[model_data["model_name_for_query"]].value.name
|
177 |
+
model_data["Type"] = TYPE_METADATA[model_data["model_name_for_query"]].value.symbol
|
178 |
+
else: # Supposed from the name
|
179 |
if any([i in model_data["model_name_for_query"] for i in ["finetuned", "-ft-"]]):
|
180 |
+
model_data["Type name"] = ModelType.SFT.value.name
|
181 |
+
model_data["Type"] = ModelType.SFT.value.symbol
|
182 |
elif any([i in model_data["model_name_for_query"] for i in ["pretrained"]]):
|
183 |
+
model_data["Type name"] = ModelType.PT.value.name
|
184 |
+
model_data["Type"] = ModelType.PT.value.symbol
|
185 |
elif any([i in model_data["model_name_for_query"] for i in ["-rl-", "-rlhf-"]]):
|
186 |
+
model_data["Type name"] = ModelType.RL.value.name
|
187 |
+
model_data["Type"] = ModelType.RL.value.symbol
|
188 |
|
189 |
|
src/utils_display.py
CHANGED
@@ -14,13 +14,14 @@ def fields(raw_class):
|
|
14 |
|
15 |
@dataclass(frozen=True)
|
16 |
class AutoEvalColumn: # Auto evals column
|
|
|
17 |
model = ColumnContent("Model", "markdown", True)
|
18 |
average = ColumnContent("Average ⬆️", "number", True)
|
19 |
-
arc = ColumnContent("ARC
|
20 |
-
hellaswag = ColumnContent("HellaSwag
|
21 |
-
mmlu = ColumnContent("MMLU
|
22 |
truthfulqa = ColumnContent("TruthfulQA (MC) ⬆️", "number", True)
|
23 |
-
model_type = ColumnContent("Type", "str", False)
|
24 |
precision = ColumnContent("Precision", "str", False, True)
|
25 |
license = ColumnContent("Hub License", "str", False)
|
26 |
params = ColumnContent("#Params (B)", "number", False)
|
|
|
14 |
|
15 |
@dataclass(frozen=True)
|
16 |
class AutoEvalColumn: # Auto evals column
|
17 |
+
model_type_symbol = ColumnContent("Type", "str", True)
|
18 |
model = ColumnContent("Model", "markdown", True)
|
19 |
average = ColumnContent("Average ⬆️", "number", True)
|
20 |
+
arc = ColumnContent("ARC", "number", True)
|
21 |
+
hellaswag = ColumnContent("HellaSwag", "number", True)
|
22 |
+
mmlu = ColumnContent("MMLU", "number", True)
|
23 |
truthfulqa = ColumnContent("TruthfulQA (MC) ⬆️", "number", True)
|
24 |
+
model_type = ColumnContent("Type name", "str", False)
|
25 |
precision = ColumnContent("Precision", "str", False, True)
|
26 |
license = ColumnContent("Hub License", "str", False)
|
27 |
params = ColumnContent("#Params (B)", "number", False)
|