Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from dataclasses import dataclass | |
from enum import Enum | |
class Task: | |
benchmark: str | |
metric: str | |
col_name: str | |
type: str | |
baseline: float = 0.0 | |
# Select your tasks here | |
# --------------------------------------------------- | |
class Tasks(Enum): | |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard | |
# task2 = Task("belebele_pol_Latn", "acc,none", "belebele_pol_Latn", "multiple_choice", 0.279) | |
task3 = Task("polemo2_in", "exact_match,score-first", "polemo2-in_g", "generate_until", 0.416) | |
task4 = Task("polemo2_in_multiple_choice", "acc,none", "polemo2-in_mc", "multiple_choice", 0.416) | |
task5 = Task("polemo2_out", "exact_match,score-first", "polemo2-out_g", "generate_until", 0.368) | |
task6 = Task("polemo2_out_multiple_choice", "acc,none", "polemo2-out_mc", "multiple_choice", 0.368) | |
task7 = Task("polish_8tags_multiple_choice", "acc,none", "8tags_mc", "multiple_choice", 0.143) | |
task8 = Task("polish_8tags_regex", "exact_match,score-first", "8tags_g", "generate_until", 0.143) | |
task9a = Task("polish_belebele_mc", "acc,none", "belebele_mc", "multiple_choice", 0.279) | |
task9 = Task("polish_belebele_regex", "exact_match,score-first", "belebele_g", "generate_until", 0.279) | |
task10 = Task("polish_dyk_multiple_choice", "f1,none", "dyk_mc", "multiple_choice", 0.289) | |
task11 = Task("polish_dyk_regex", "f1,score-first", "dyk_g", "generate_until", 0.289) | |
task12 = Task("polish_ppc_multiple_choice", "acc,none", "ppc_mc", "multiple_choice", 0.419) | |
task13 = Task("polish_ppc_regex", "exact_match,score-first", "ppc_g", "generate_until", 0.419) | |
task14 = Task("polish_psc_multiple_choice", "f1,none", "psc_mc", "multiple_choice", 0.466) | |
task15 = Task("polish_psc_regex", "f1,score-first", "psc_g", "generate_until", 0.466) | |
task16 = Task("polish_cbd_multiple_choice", "f1,none", "cbd_mc", "multiple_choice", 0.149) | |
task17 = Task("polish_cbd_regex", "f1,score-first", "cbd_g", "generate_until", 0.149) | |
task18 = Task("polish_klej_ner_multiple_choice", "acc,none", "klej_ner_mc", "multiple_choice", 0.343) | |
task19 = Task("polish_klej_ner_regex", "exact_match,score-first", "klej_ner_g", "generate_until", 0.343) | |
task21 = Task("polish_polqa_reranking_multiple_choice", "acc,none", "polqa_reranking_mc", "multiple_choice", 0.5335588952710677) # multiple_choice | |
task22 = Task("polish_polqa_open_book", "levenshtein,none", "polqa_open_book_g", "generate_until", 0.0) # generate_until | |
task23 = Task("polish_polqa_closed_book", "levenshtein,none", "polqa_closed_book_g", "generate_until", 0.0) # generate_until | |
task24 = Task("polish_poquad_open_book", "levenshtein,none", "poquad_open_book", "generate_until", 0.0) | |
task25 = Task("polish_eq_bench_first_turn", "first_eqbench,none", "eq_bench_first_turn", "generate_until", 0.0) | |
task26 = Task("polish_eq_bench", "average_eqbench,none", "eq_bench", "generate_until", 0.0) | |
task20 = Task("polish_poleval2018_task3_test_10k", "word_perplexity,none", "poleval2018_task3_test_10k", "other") | |
task27 = Task("polish_poquad_reranking", "acc,none", "poquad_reranking", "other", 0.0) | |
task28 = Task("polish_abstractive_poquad_rag", "levenshtein,none", "abstractive_poquad_rag", "other", 0.0) | |
task29 = Task("polish_abstractive_poquad_open_book", "levenshtein,none", "abstractive_poquad_open_book", "other", 0.0) | |
task30 = Task("polish_pes_regex", "exact_match,score-first", "pes_g", "other", 0.2) | |
g_tasks = [task.value.benchmark for task in Tasks if task.value.type == "generate_until"] | |
mc_tasks = [task.value.benchmark for task in Tasks if task.value.type == "multiple_choice"] | |
rag_tasks = ['polish_polqa_reranking_multiple_choice', 'polish_polqa_open_book', 'polish_poquad_open_book'] | |
all_tasks = g_tasks + mc_tasks | |
NUM_FEWSHOT = 0 # Change with your few shot | |
# --------------------------------------------------- | |
# Your leaderboard name | |
TITLE = """ | |
<div style="display: flex; flex-wrap: wrap; justify-content: space-around;"> | |
<img src="https://speakleash.org/wp-content/uploads/2023/09/SpeakLeash_logo.svg"> | |
<div> | |
<h1 align="center" id="space-title">Open PL LLM Leaderboard (0-shot and 5-shot)</h1> | |
<h2 align="center" id="space-subtitle">Leaderboard was created as part of an open-science project SpeakLeash.org</h2> | |
</div> | |
</div> | |
""" | |
# What does your leaderboard evaluate? | |
INTRODUCTION_TEXT = f""" | |
The leaderboard evaluates language models on a set of Polish tasks. The tasks are designed to test the models' ability to understand and generate Polish text. The leaderboard is designed to be a benchmark for the Polish language model community, and to help researchers and practitioners understand the capabilities of different models. | |
For now, models are tested without theirs templates. | |
Almost every task has two versions: regex and multiple choice. | |
* _g suffix means that a model needs to generate an answer (only suitable for instructions-based models) | |
* _mc suffix means that a model is scored against every possible class (suitable also for base models) | |
Average columns are normalized against scores by "Baseline (majority class)". | |
* `,chat` suffix means that a model is tested using chat templates | |
* `,chat,multiturn` suffix means that a model is tested using chat templates and fewshot examples are treated as a multi-turn conversation | |
* 🚧 prefix means that not all tasks were calculated and the average scores are not accurate | |
We gratefully acknowledge Polish high-performance computing infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH) for providing computer facilities and support within computational grant no. PLG/2024/016951. | |
""" | |
# Which evaluations are you running? how can people reproduce what you have? | |
LLM_BENCHMARKS_TEXT = f""" | |
## Do you want to add your model to the leaderboard? | |
Contact with me: [LinkedIn](https://www.linkedin.com/in/wrobelkrzysztof/) | |
or join our [Discord SpeakLeash](https://discord.gg/FfYp4V6y3R) | |
## TODO | |
* fix long model names | |
* add inference time | |
* add more tasks | |
* fix scrolling on Firefox | |
## Tasks | |
Tasks taken into account while calculating averages: | |
* Average: {', '.join(all_tasks)} | |
* Avg g: {', '.join(g_tasks)} | |
* Avg mc: {', '.join(mc_tasks)} | |
* Avg RAG: {', '.join(rag_tasks)} | |
| Task | Dataset | Metric | Type | | |
|---------------------------------|---------------------------------------|-----------|-----------------| | |
| polemo2_in | allegro/klej-polemo2-in | accuracy | generate_until | | |
| polemo2_in_mc | allegro/klej-polemo2-in | accuracy | multiple_choice | | |
| polemo2_out | allegro/klej-polemo2-out | accuracy | generate_until | | |
| polemo2_out_mc | allegro/klej-polemo2-out | accuracy | multiple_choice | | |
| 8tags_mc | sdadas/8tags | accuracy | multiple_choice | | |
| 8tags_g | sdadas/8tags | accuracy | generate_until | | |
| belebele_mc | facebook/belebele | accuracy | multiple_choice | | |
| belebele_g | facebook/belebele | accuracy | generate_until | | |
| dyk_mc | allegro/klej-dyk | binary F1 | multiple_choice | | |
| dyk_g | allegro/klej-dyk | binary F1 | generate_until | | |
| ppc_mc | sdadas/ppc | accuracy | multiple_choice | | |
| ppc_g | sdadas/ppc | accuracy | generate_until | | |
| psc_mc | allegro/klej-psc | binary F1 | multiple_choice | | |
| psc_g | allegro/klej-psc | binary F1 | generate_until | | |
| cbd_mc | ptaszynski/PolishCyberbullyingDataset | macro F1 | multiple_choice | | |
| cbd_g | ptaszynski/PolishCyberbullyingDataset | macro F1 | generate_until | | |
| klej_ner_mc | allegro/klej-nkjp-ner | accuracy | multiple_choice | | |
| klej_ner_g | allegro/klej-nkjp-ner | accuracy | generate_until | | |
| polqa_reranking_mc | ipipan/polqa | accuracy | multiple_choice | | |
| polqa_open_book_g | ipipan/polqa | levenshtein | generate_until | | |
| polqa_closed_book_g | ipipan/polqa | levenshtein | generate_until | | |
| poleval2018_task3_test_10k | enelpol/poleval2018_task3_test_10k | word perplexity | other | | |
| polish_poquad_open_book | enelpol/poleval2018_task3_test_10k | levenshtein | generate_until | | |
| polish_eq_bench_first_turn | speakleash/EQ-Bench-PL | eq_bench | generate_until | | |
| polish_eq_bench | speakleash/EQ-Bench-PL | eq_bench | generate_until | | |
## Reproducibility | |
To reproduce our results, you need to clone the repository: | |
``` | |
git clone https://github.com/speakleash/lm-evaluation-harness.git -b polish3 | |
cd lm-evaluation-harness | |
pip install -e . | |
``` | |
and run benchmark for 0-shot and 5-shot: | |
``` | |
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_generate --num_fewshot 0 --output_path results/ --log_samples | |
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_mc --num_fewshot 0 --output_path results/ --log_samples | |
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_generate_few --num_fewshot 5 --output_path results/ --log_samples | |
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_mc --num_fewshot 5 --output_path results/ --log_samples | |
``` | |
With chat templates: | |
``` | |
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_generate --num_fewshot 0 --output_path results/ --log_samples --apply_chat_template | |
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_mc --num_fewshot 0 --output_path results/ --log_samples --apply_chat_template | |
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_generate_few --num_fewshot 5 --output_path results/ --log_samples --apply_chat_template | |
lm_eval --model hf --model_args pretrained=speakleash/Bielik-7B-Instruct-v0.1 --tasks polish_mc --num_fewshot 5 --output_path results/ --log_samples --apply_chat_template | |
``` | |
## List of Polish models | |
* speakleash/Bielik-7B-Instruct-v0.1 | |
* speakleash/Bielik-7B-v0.1 | |
* Azurro/APT3-1B-Base | |
* Azurro/APT3-1B-Instruct-v1 | |
* Voicelab/trurl-2-7b | |
* Voicelab/trurl-2-13b-academic | |
* OPI-PG/Qra-1b | |
* OPI-PG/Qra-7b | |
* OPI-PG/Qra-13b | |
* szymonrucinski/Curie-7B-v1 | |
* sdadas/polish-gpt2-xl | |
### List of multilingual models | |
* meta-llama/Llama-2-7b-chat-hf | |
* mistralai/Mistral-7B-Instruct-v0.1 | |
* HuggingFaceH4/zephyr-7b-beta | |
* HuggingFaceH4/zephyr-7b-alpha | |
* internlm/internlm2-chat-7b-sft | |
* internlm/internlm2-chat-7b | |
* mistralai/Mistral-7B-Instruct-v0.2 | |
* teknium/OpenHermes-2.5-Mistral-7B | |
* openchat/openchat-3.5-1210 | |
* Nexusflow/Starling-LM-7B-beta | |
* openchat/openchat-3.5-0106 | |
* berkeley-nest/Starling-LM-7B-alpha | |
* upstage/SOLAR-10.7B-Instruct-v1.0 | |
* meta-llama/Llama-2-7b-hf | |
* internlm/internlm2-base-7b | |
* mistralai/Mistral-7B-v0.1 | |
* internlm/internlm2-7b | |
* alpindale/Mistral-7B-v0.2-hf | |
* internlm/internlm2-1_8b | |
""" | |
EVALUATION_QUEUE_TEXT = """ | |
## Some good practices before submitting a model | |
### 1) Make sure you can load your model and tokenizer using AutoClasses: | |
```python | |
from transformers import AutoConfig, AutoModel, AutoTokenizer | |
config = AutoConfig.from_pretrained("your model name", revision=revision) | |
model = AutoModel.from_pretrained("your model name", revision=revision) | |
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision) | |
``` | |
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded. | |
Note: make sure your model is public! | |
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted! | |
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index) | |
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`! | |
### 3) Make sure your model has an open license! | |
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗 | |
### 4) Fill up your model card | |
When we add extra information about models to the leaderboard, it will be automatically taken from the model card | |
## In case of model failure | |
If your model is displayed in the `FAILED` category, its execution stopped. | |
Make sure you have followed the above steps first. | |
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task). | |
""" | |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
CITATION_BUTTON_TEXT = r""" | |
@misc{open-pl-llm-leaderboard, | |
title = {Open PL LLM Leaderboard}, | |
author = {Wróbel, Krzysztof and {SpeakLeash Team} and {Cyfronet Team}}, | |
year = 2024, | |
publisher = {Hugging Face}, | |
howpublished = "\url{https://huggingface.co/spaces/speakleash/open_pl_llm_leaderboard}" | |
} | |
""" | |