|
import pandas as pd |
|
from huggingface_hub import snapshot_download |
|
import subprocess |
|
import re |
|
try: |
|
from src.display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util |
|
except: |
|
print("local debug: from display.utils") |
|
from display.utils import GPU_TEMP, GPU_Mem, GPU_Power, GPU_Util |
|
|
|
def my_snapshot_download(repo_id, revision, local_dir, repo_type, max_workers): |
|
for i in range(10): |
|
try: |
|
snapshot_download( |
|
repo_id=repo_id, revision=revision, local_dir=local_dir, repo_type=repo_type, max_workers=max_workers |
|
) |
|
return |
|
except Exception as e: |
|
print(f"Failed to download {repo_id} at {revision} with error: {e}. Retrying...") |
|
import time |
|
|
|
time.sleep(60) |
|
return |
|
|
|
|
|
def get_dataset_url(row): |
|
dataset_name = row["Benchmark"] |
|
dataset_url = row["Dataset Link"] |
|
benchmark = f'<a target="_blank" href="{dataset_url}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{dataset_name}</a>' |
|
return benchmark |
|
|
|
|
|
def get_dataset_summary_table(file_path): |
|
df = pd.read_csv(file_path) |
|
|
|
df["Benchmark"] = df.apply(lambda x: get_dataset_url(x), axis=1) |
|
|
|
df = df[["Category", "Benchmark", "Data Split", "Data Size", "Language"]] |
|
|
|
return df |
|
|
|
def parse_nvidia_smi(): |
|
|
|
result = subprocess.run(['nvidia-smi'], capture_output=True, text=True) |
|
output = result.stdout.strip() |
|
|
|
|
|
gpu_stats = [] |
|
|
|
|
|
gpu_info_pattern = re.compile(r'(\d+)C\s+P\d+\s+(\d+)W / \d+W\s+\|\s+(\d+)MiB / \d+MiB\s+\|\s+(\d+)%') |
|
lines = output.split('\n') |
|
|
|
for line in lines: |
|
match = gpu_info_pattern.search(line) |
|
if match: |
|
temp, power_usage, mem_usage, gpu_util = map(int, match.groups()) |
|
gpu_stats.append({ |
|
GPU_TEMP: temp, |
|
GPU_Power: power_usage, |
|
GPU_Mem: mem_usage, |
|
GPU_Util: gpu_util |
|
}) |
|
|
|
gpu_stats_total = { |
|
GPU_TEMP: 0, |
|
GPU_Power: 0, |
|
GPU_Mem: 0, |
|
GPU_Util: 0 |
|
} |
|
for gpu_stat in gpu_stats: |
|
gpu_stats_total[GPU_TEMP] += gpu_stat[GPU_TEMP] |
|
gpu_stats_total[GPU_Power] += gpu_stat[GPU_Power] |
|
gpu_stats_total[GPU_Mem] += gpu_stat[GPU_Mem] |
|
gpu_stats_total[GPU_Util] += gpu_stat[GPU_Util] |
|
|
|
gpu_stats_total[GPU_TEMP] /= len(gpu_stats) |
|
gpu_stats_total[GPU_Power] /= len(gpu_stats) |
|
gpu_stats_total[GPU_Util] /= len(gpu_stats) |
|
|
|
return [gpu_stats_total] |
|
|
|
def monitor_gpus(stop_event, interval, stats_list): |
|
while not stop_event.is_set(): |
|
gpu_stats = parse_nvidia_smi() |
|
if gpu_stats: |
|
stats_list.extend(gpu_stats) |
|
stop_event.wait(interval) |
|
|
|
def analyze_gpu_stats(stats_list): |
|
if not stats_list: |
|
return None |
|
avg_stats = {key: sum(d[key] for d in stats_list) / len(stats_list) for key in stats_list[0]} |
|
return avg_stats |
|
|
|
|
|
if __name__ == "__main__": |
|
print(analyze_gpu_stats(parse_nvidia_smi())) |
|
|