Epik / app /cosmic_view.py
Minh Q. Le
Merged COSMIC and GPT UI
df89157
raw
history blame
8.23 kB
import os
import pickle
import tempfile
import gradio as gr
from tqdm import tqdm
from app.utils import (
create_input_instruction,
format_prediction_ouptut,
remove_temp_dir,
decode_numeric_label,
decode_speaker_role,
display_sentiment_score_table,
sentiment_flow_plot,
EXAMPLE_CONVERSATIONS,
)
from fairseq.data.data_utils import collate_tokens
import sys
sys.path.insert(0, "../") # neccesary to load modules outside of app
from app import roberta, comet, COSMIC_MODEL, cosmic_args
from preprocessing import preprocess
from Model.COSMIC.erc_training.predict_epik import predict, get_valid_dataloader
def cosmic_preprocess(input, dir="."):
result = preprocess.process_user_input(input)
if not result["success"]:
raise gr.Error(result["message"])
data = result["data"]
# processed the data and turn it into a csv file
output_csv_path = os.path.join(dir, "epik.csv")
grouped_df = preprocess.preapre_csv(data, output_csv_path, with_label=False)
# convert the csv to pickle file of speakers, labels, sentences
pickle_dest = os.path.join(dir, "epik.pkl")
preprocess.convert_to_pickle(
source=output_csv_path,
dest=pickle_dest,
index_col="ConversationId",
list_type_columns=[
"Text",
"ParticipantRoleEncoded",
"LabelNumeric",
],
order=[
"ParticipantRoleEncoded",
"LabelNumeric",
"Text",
],
exclude=["ParticipantRole"],
)
# split the id for prediction, we'll put these in validation ids
preprocess.split_and_save_ids(
grouped_df["ConversationId"].to_list(), 0, 0, 1, dir=dir
)
# add ids into the pickle files
preprocess.merge_pkl_with_ids(
pickle_src=pickle_dest,
ids_files=["train_set.txt", "test_set.txt", "validation_set.txt"],
dir=dir,
)
# generate the sentences pickle file
sentences_pkl_path = os.path.join(dir, "epik_sentences.pkl")
preprocess.convert_to_pickle(
source=output_csv_path,
dest=sentences_pkl_path,
index_col="ConversationId",
list_type_columns=["Text"],
exclude=[
"ParticipantRole",
"ParticipantRoleEncoded",
"LabelNumeric",
],
)
return pickle_dest, sentences_pkl_path
def cosmic_roberta_extract(path, dest_dir="."):
# load the feature from file at path
speakers, labels, sentences, train_ids, test_ids, valid_ids = pickle.load(
open(path, "rb")
)
roberta1, roberta2, roberta3, roberta4 = {}, {}, {}, {}
all_ids = train_ids + test_ids + valid_ids
for i in tqdm(range(len(all_ids))):
item = all_ids[i]
sent = sentences[item]
sent = [s.encode("ascii", errors="ignore").decode("utf-8") for s in sent]
batch = collate_tokens([roberta.encode(s) for s in sent], pad_idx=1)
feat = roberta.extract_features(batch, return_all_hiddens=True)
roberta1[item] = [row for row in feat[-1][:, 0, :].detach().numpy()]
roberta2[item] = [row for row in feat[-2][:, 0, :].detach().numpy()]
roberta3[item] = [row for row in feat[-3][:, 0, :].detach().numpy()]
roberta4[item] = [row for row in feat[-4][:, 0, :].detach().numpy()]
roberta_feature_path = os.path.join(dest_dir, "epik_features_roberta.pkl")
pickle.dump(
[
speakers,
labels,
roberta1,
roberta2,
roberta3,
roberta4,
sentences,
train_ids,
test_ids,
valid_ids,
],
open(roberta_feature_path, "wb"),
)
return roberta_feature_path
def cosmic_comet_extract(path, dir="."):
print("Extracting features in", path)
sentences = pickle.load(open(path, "rb"))
feaures = comet.extract(sentences)
comet_feature_path = os.path.join(dir, "epik_features_comet.pkl")
pickle.dump(feaures, open(comet_feature_path, "wb"))
return comet_feature_path
def cosmic_classifier(input):
# create a temporary directory for the input data
temp_dir = tempfile.mkdtemp(dir=os.getcwd(), prefix="temp")
epik_path, epik_sentences_path = cosmic_preprocess(input, temp_dir)
roberta_path = cosmic_roberta_extract(epik_path, temp_dir)
comet_path = cosmic_comet_extract(epik_sentences_path, temp_dir)
# use cosmic model to make predictions
data_loader, ids = get_valid_dataloader(roberta_path, comet_path)
predictions = predict(COSMIC_MODEL, data_loader, cosmic_args)
speakers, _, sentences, _, _, valid_ids = pickle.load(open(epik_path, "rb"))
# Assuming that there's only one conversation
conv_id = ids[0]
speaker_roles = [
decode_speaker_role(numeric_role) for numeric_role in speakers[conv_id]
]
labels = [decode_numeric_label(pred) for pred in predictions[0]]
output = format_prediction_ouptut(speaker_roles, sentences[conv_id], labels)
print()
print("======= Removing Temporary Directory =======")
remove_temp_dir(temp_dir)
return output
def cosmic_ui():
with gr.Blocks() as cosmic_model:
gr.Markdown(
"""
# COSMIC
COSMIC is a popular model for predicting sentiment labels using the entire
context of the conversation. In other words, it analyzes the previous
messages to predict the sentiment label for the current message.<br/>
The model was adopted from this
[repo](https://github.com/declare-lab/conv-emotion.git), implemented based
on this research [paper](https://arxiv.org/pdf/2010.02795.pdf).
```bash COSMIC: COmmonSense knowledge for eMotion Identification in
Conversations. D. Ghosal, N. Majumder, A. Gelbukh, R. Mihalcea, & S. Poria. Findings of EMNLP 2020.
```
"""
)
create_input_instruction()
with gr.Row():
with gr.Column():
example_dropdown = gr.Dropdown(
choices=["-- Not Selected --"] + list(EXAMPLE_CONVERSATIONS.keys()),
value="-- Not Selected --",
label="Select an example",
)
gr.Markdown('<p style="text-align: center;color: gray;">--- OR ---</p>')
conversation_input = gr.TextArea(
value="",
label="Input you conversation",
placeholder="Plese input your conversation here",
lines=15,
max_lines=15,
)
def on_example_change(input):
if input in EXAMPLE_CONVERSATIONS:
return EXAMPLE_CONVERSATIONS[input]
return ""
example_dropdown.input(
on_example_change,
inputs=example_dropdown,
outputs=conversation_input,
)
with gr.Column():
output = gr.Textbox(
value="",
label="Predicted Sentiment Labels",
lines=22,
max_lines=22,
interactive=False,
)
submit_btn = gr.Button(value="Submit")
submit_btn.click(cosmic_classifier, conversation_input, output)
# reset the output whenever a change in the input is detected
conversation_input.change(lambda x: "", conversation_input, output)
gr.Markdown("# Sentiment Flow Plot")
with gr.Row():
with gr.Column(scale=1):
display_sentiment_score_table()
with gr.Column(scale=2):
plot_box = gr.Plot(label="Analysis Plot")
plot_btn = gr.Button(value="Plot Sentiment Flow")
plot_btn.click(sentiment_flow_plot, inputs=[output], outputs=[plot_box])
# reset all outputs whenever a change in the input is detected
conversation_input.change(
lambda x: ("", None),
conversation_input,
outputs=[output, plot_box],
)
return cosmic_model