import os import pickle import tempfile import gradio as gr from tqdm import tqdm from app.utils import ( create_input_instruction, format_prediction_ouptut, remove_temp_dir, decode_numeric_label, decode_speaker_role, display_sentiment_score_table, sentiment_flow_plot, EXAMPLE_CONVERSATIONS, ) from fairseq.data.data_utils import collate_tokens import sys sys.path.insert(0, "../") # neccesary to load modules outside of app from app import roberta, comet, COSMIC_MODEL, cosmic_args from preprocessing import preprocess from Model.COSMIC.erc_training.predict_epik import predict, get_valid_dataloader def cosmic_preprocess(input, dir="."): result = preprocess.process_user_input(input) if not result["success"]: raise gr.Error(result["message"]) data = result["data"] # processed the data and turn it into a csv file output_csv_path = os.path.join(dir, "epik.csv") grouped_df = preprocess.preapre_csv(data, output_csv_path, with_label=False) # convert the csv to pickle file of speakers, labels, sentences pickle_dest = os.path.join(dir, "epik.pkl") preprocess.convert_to_pickle( source=output_csv_path, dest=pickle_dest, index_col="ConversationId", list_type_columns=[ "Text", "ParticipantRoleEncoded", "LabelNumeric", ], order=[ "ParticipantRoleEncoded", "LabelNumeric", "Text", ], exclude=["ParticipantRole"], ) # split the id for prediction, we'll put these in validation ids preprocess.split_and_save_ids( grouped_df["ConversationId"].to_list(), 0, 0, 1, dir=dir ) # add ids into the pickle files preprocess.merge_pkl_with_ids( pickle_src=pickle_dest, ids_files=["train_set.txt", "test_set.txt", "validation_set.txt"], dir=dir, ) # generate the sentences pickle file sentences_pkl_path = os.path.join(dir, "epik_sentences.pkl") preprocess.convert_to_pickle( source=output_csv_path, dest=sentences_pkl_path, index_col="ConversationId", list_type_columns=["Text"], exclude=[ "ParticipantRole", "ParticipantRoleEncoded", "LabelNumeric", ], ) return pickle_dest, sentences_pkl_path def cosmic_roberta_extract(path, dest_dir="."): # load the feature from file at path speakers, labels, sentences, train_ids, test_ids, valid_ids = pickle.load( open(path, "rb") ) roberta1, roberta2, roberta3, roberta4 = {}, {}, {}, {} all_ids = train_ids + test_ids + valid_ids for i in tqdm(range(len(all_ids))): item = all_ids[i] sent = sentences[item] sent = [s.encode("ascii", errors="ignore").decode("utf-8") for s in sent] batch = collate_tokens([roberta.encode(s) for s in sent], pad_idx=1) feat = roberta.extract_features(batch, return_all_hiddens=True) roberta1[item] = [row for row in feat[-1][:, 0, :].detach().numpy()] roberta2[item] = [row for row in feat[-2][:, 0, :].detach().numpy()] roberta3[item] = [row for row in feat[-3][:, 0, :].detach().numpy()] roberta4[item] = [row for row in feat[-4][:, 0, :].detach().numpy()] roberta_feature_path = os.path.join(dest_dir, "epik_features_roberta.pkl") pickle.dump( [ speakers, labels, roberta1, roberta2, roberta3, roberta4, sentences, train_ids, test_ids, valid_ids, ], open(roberta_feature_path, "wb"), ) return roberta_feature_path def cosmic_comet_extract(path, dir="."): print("Extracting features in", path) sentences = pickle.load(open(path, "rb")) feaures = comet.extract(sentences) comet_feature_path = os.path.join(dir, "epik_features_comet.pkl") pickle.dump(feaures, open(comet_feature_path, "wb")) return comet_feature_path def cosmic_classifier(input): # create a temporary directory for the input data temp_dir = tempfile.mkdtemp(dir=os.getcwd(), prefix="temp") epik_path, epik_sentences_path = cosmic_preprocess(input, temp_dir) roberta_path = cosmic_roberta_extract(epik_path, temp_dir) comet_path = cosmic_comet_extract(epik_sentences_path, temp_dir) # use cosmic model to make predictions data_loader, ids = get_valid_dataloader(roberta_path, comet_path) predictions = predict(COSMIC_MODEL, data_loader, cosmic_args) speakers, _, sentences, _, _, valid_ids = pickle.load(open(epik_path, "rb")) # Assuming that there's only one conversation conv_id = ids[0] speaker_roles = [ decode_speaker_role(numeric_role) for numeric_role in speakers[conv_id] ] labels = [decode_numeric_label(pred) for pred in predictions[0]] output = format_prediction_ouptut(speaker_roles, sentences[conv_id], labels) print() print("======= Removing Temporary Directory =======") remove_temp_dir(temp_dir) return output def cosmic_ui(): with gr.Blocks() as cosmic_model: gr.Markdown( """ # COSMIC COSMIC is a popular model for predicting sentiment labels using the entire context of the conversation. In other words, it analyzes the previous messages to predict the sentiment label for the current message.
The model was adopted from this [repo](https://github.com/declare-lab/conv-emotion.git), implemented based on this research [paper](https://arxiv.org/pdf/2010.02795.pdf). ```bash COSMIC: COmmonSense knowledge for eMotion Identification in Conversations. D. Ghosal, N. Majumder, A. Gelbukh, R. Mihalcea, & S. Poria. Findings of EMNLP 2020. ``` """ ) create_input_instruction() with gr.Row(): with gr.Column(): example_dropdown = gr.Dropdown( choices=["-- Not Selected --"] + list(EXAMPLE_CONVERSATIONS.keys()), value="-- Not Selected --", label="Select an example", ) gr.Markdown('

--- OR ---

') conversation_input = gr.TextArea( value="", label="Input you conversation", placeholder="Plese input your conversation here", lines=15, max_lines=15, ) def on_example_change(input): if input in EXAMPLE_CONVERSATIONS: return EXAMPLE_CONVERSATIONS[input] return "" example_dropdown.input( on_example_change, inputs=example_dropdown, outputs=conversation_input, ) with gr.Column(): output = gr.Textbox( value="", label="Predicted Sentiment Labels", lines=22, max_lines=22, interactive=False, ) submit_btn = gr.Button(value="Submit") submit_btn.click(cosmic_classifier, conversation_input, output) # reset the output whenever a change in the input is detected conversation_input.change(lambda x: "", conversation_input, output) gr.Markdown("# Sentiment Flow Plot") with gr.Row(): with gr.Column(scale=1): display_sentiment_score_table() with gr.Column(scale=2): plot_box = gr.Plot(label="Analysis Plot") plot_btn = gr.Button(value="Plot Sentiment Flow") plot_btn.click(sentiment_flow_plot, inputs=[output], outputs=[plot_box]) # reset all outputs whenever a change in the input is detected conversation_input.change( lambda x: ("", None), conversation_input, outputs=[output, plot_box], ) return cosmic_model