victorialslocum's picture
update to gradio v3.4
eb14dc8
raw
history blame
19.6 kB
import gradio as gr
import spacy
from spacy import displacy
from spacy.tokens import Span
import pandas as pd
import base64
import random
DEFAULT_MODEL = "en_core_web"
DEFAULT_TEXT = "Apple is looking at buying U.K. startup for $1 billion."
texts = {"en": DEFAULT_TEXT, "ca": "Apple està buscant comprar una startup del Regne Unit per mil milions de dòlars", "da": "Apple overvejer at købe et britisk startup for 1 milliard dollar.", "de": "Die ganze Stadt ist ein Startup: Shenzhen ist das Silicon Valley für Hardware-Firmen",
"el": "Η άνιση κατανομή του πλούτου και του εισοδήματος, η οποία έχει λάβει τρομερές διαστάσεις, δεν δείχνει τάσεις βελτίωσης.", "es": "Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.", "fi": "Itseajavat autot siirtävät vakuutusvastuun autojen valmistajille", "fr": "Apple cherche à acheter une start-up anglaise pour 1 milliard de dollars", "it": "Apple vuole comprare una startup del Regno Unito per un miliardo di dollari",
"ja": "アップルがイギリスの新興企業を10億ドルで購入を検討", "ko": "애플이 영국의 스타트업을 10억 달러에 인수하는 것을 알아보고 있다.", "lt": "Jaunikis pirmąją vestuvinę naktį iškeitė į areštinės gultą", "nb": "Apple vurderer å kjøpe britisk oppstartfirma for en milliard dollar.", "nl": "Apple overweegt om voor 1 miljard een U.K. startup te kopen",
"pl": "Poczuł przyjemną woń mocnej kawy.", "pt": "Apple está querendo comprar uma startup do Reino Unido por 100 milhões de dólares", "ro": "Apple plănuiește să cumpere o companie britanică pentru un miliard de dolari", "ru": "Apple рассматривает возможность покупки стартапа из Соединённого Королевства за $1 млрд", "sv": "Apple överväger att köpa brittisk startup för 1 miljard dollar.", "zh": "作为语言而言,为世界使用人数最多的语言,目前世界有五分之一人口做为母语。"}
button_css = "float: right; --tw-border-opacity: 1; border-color: rgb(229 231 235 / var(--tw-border-opacity)); --tw-gradient-from: rgb(243 244 246 / 0.7); --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to, rgb(243 244 246 / 0)); --tw-gradient-to: rgb(229 231 235 / 0.8); --tw-text-opacity: 1; color: rgb(55 65 81 / var(--tw-text-opacity)); border-width: 1px; --tw-bg-opacity: 1; background-color: rgb(255 255 255 / var(--tw-bg-opacity)); background-image: linear-gradient(to bottom right, var(--tw-gradient-stops)); display: inline-flex; flex: 1 1 0%; align-items: center; justify-content: center; --tw-shadow: 0 1px 2px 0 rgb(0 0 0 / 0.05); --tw-shadow-colored: 0 1px 2px 0 var(--tw-shadow-color); box-shadow: var(--tw-ring-offset-shadow, 0 0 #0000), var(--tw-ring-shadow, 0 0 #0000), var(--tw-shadow); -webkit-appearance: button; border-radius: 0.5rem; padding-top: 0.5rem; padding-bottom: 0.5rem; padding-left: 1rem; padding-right: 1rem; font-size: 1rem; line-height: 1.5rem; font-weight: 600;"
DEFAULT_COLOR = "linear-gradient(90deg, #FFCA74, #7AECEC)"
DEFAULT_ENTS = ['CARDINAL', 'DATE', 'EVENT', 'FAC', 'GPE', 'LANGUAGE', 'LAW', 'LOC', 'MONEY',
'NORP', 'ORDINAL', 'ORG', 'PERCENT', 'PERSON', 'PRODUCT', 'QUANTITY', 'TIME', 'WORK_OF_ART']
DEFAULT_TOK_ATTR = ['idx', 'text', 'pos_', 'lemma_', 'shape_', 'dep_']
NOUN_ATTR = ['text', 'root.text', 'root.dep_', 'root.head.text']
# get the huggingface models specified in the requirements.txt file
def get_all_models():
with open("requirements.txt") as f:
content = f.readlines()
models = []
for line in content:
if "huggingface.co" in line:
# the first three tokens in model, ex. en_core_web
model = "_".join(line.split("/")[4].split("_")[:3])
if model not in models:
models.append(model)
return models
models = get_all_models()
# when clicked, download as SVG. Rendered as HTML on the page
def download_svg(svg):
encode = base64.b64encode(bytes(svg, 'utf-8'))
img = 'data:image/svg+xml;base64,' + str(encode)[2:-1]
html = f'<a download="displacy.svg" href="{img}" style="{button_css}">Download as SVG</a>'
return html
# create dependency graph, inputs are text, collapse punctuation,
# collapse phrases, compact, background color, font color, and model
def dependency(text, col_punct, col_phrase, compact, bg, font, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
doc = nlp(text)
options = {"compact": compact, "collapse_phrases": col_phrase,
"collapse_punct": col_punct, "bg": bg, "color": font}
svg = displacy.render(doc, style="dep", options=options)
download = download_svg(svg) # download button for SVG
return svg, download, model_name
# returns the NER displacy, inputs are text, checked ents, and model
def entity(text, ents, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
doc = nlp(text)
options = {"ents": ents}
svg = displacy.render(doc, style="ent", options=options)
return svg, model_name
# returns token attributes for the user inputs
def token(text, attributes, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
data = pd.DataFrame(data, columns=attributes)
return data, model_name
# returns token attributtes in the default state
# the return value is not a pandas DataFrame
def default_token(text, attributes, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
data = []
doc = nlp(text)
for tok in doc:
tok_data = []
for attr in attributes:
tok_data.append(getattr(tok, attr))
data.append(tok_data)
return data, model_name
# Get similarity of two random generated vectors
def random_vectors(text, model):
model_name = model + "_md"
nlp = spacy.load(model_name)
doc = nlp(text)
n_chunks = [chunk for chunk in doc.noun_chunks if doc.noun_chunks]
words = [tok for tok in doc if not tok.is_stop and tok.pos_ not in [
'PUNCT', "PROPN"]]
str_list = n_chunks + words
choice = random.choices(str_list, k=2)
return round(choice[0].similarity(choice[1]), 2), choice[0].text, choice[1].text, model_name
# Get similarity of two inputted vectors
def vectors(input1, input2, model):
model_name = model + "_md"
nlp = spacy.load(model_name)
return round(nlp(input1).similarity(nlp(input2)), 2), model_name
# display spans, inputs are text, spans, labels, and model
def span(text, span1, span2, label1, label2, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
doc = nlp(text)
if span1:
idx1_1 = 0
idx1_2 = 0
idx2_1 = 0
idx2_2 = 0
span1 = [split for split in span1.split(" ") if split]
span2 = [split for split in span2.split(" ") if split]
for i in range(len(list(doc))):
tok = list(doc)[i]
if span1[0] == tok.text:
idx1_1 = i
if span1[-1] == tok.text:
idx1_2 = i + 1
if span2[0] == tok.text:
idx2_1 = i
if span2[-1] == tok.text:
idx2_2 = i + 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
else:
idx1_1 = 0
idx1_2 = round(len(list(doc)) / 2)
idx2_1 = 0
idx2_2 = 1
doc.spans["sc"] = [
Span(doc, idx1_1, idx1_2, label1),
Span(doc, idx2_1, idx2_2, label2),
]
svg = displacy.render(doc, style="span")
return svg, model_name
# returns noun chunks in text
def noun_chunks(text, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
data = []
doc = nlp(text)
for chunk in doc.noun_chunks:
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
chunk.root.head.text])
data = pd.DataFrame(data, columns=NOUN_ATTR)
return data, model_name
# returns noun chuncks for the default value
# the return value is not a pandas DataFrame
def default_noun_chunks(text, model):
model_name = model + "_sm"
nlp = spacy.load(model_name)
data = []
doc = nlp(text)
for chunk in doc.noun_chunks:
data.append([chunk.text, chunk.root.text, chunk.root.dep_,
chunk.root.head.text])
return data, model_name
# get default text based on language model
def get_text(model):
for i in range(len(models)):
model = model.split("_")[0]
new_text = texts[model]
return new_text
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown("# Pipeline Visualizer")
gr.Markdown(
"### Visualize parts of the spaCy pipeline in an interactive Gradio demo")
with gr.Column():
gr.Image("pipeline.svg")
with gr.Box():
with gr.Column():
gr.Markdown(" ## Choose a language model and the inputted text")
with gr.Row():
with gr.Column(scale=0.25):
model_input = gr.Dropdown(
choices=models, value=DEFAULT_MODEL, interactive=True, label="Pretrained Pipelines")
with gr.Row():
with gr.Column(scale=0.5):
text_input = gr.Textbox(
value=DEFAULT_TEXT, interactive=True, label="Input Text")
with gr.Row():
with gr.Column(scale=0.25):
button = gr.Button("Update", variant="primary").style(full_width=False)
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Dependency Parser](https://spacy.io/usage/visualizers#dep)")
gr.Markdown(
"The dependency visualizer shows part-of-speech tags and syntactic dependencies")
with gr.Column(scale=0.25):
dep_model = gr.Textbox(
label="Model", value="en_core_web_sm")
with gr.Row():
with gr.Column():
col_punct = gr.Checkbox(
label="Collapse Punctuation", value=True)
col_phrase = gr.Checkbox(
label="Collapse Phrases", value=True)
compact = gr.Checkbox(label="Compact", value=False)
with gr.Column():
bg = gr.Textbox(
label="Background Color", value=DEFAULT_COLOR)
with gr.Column():
text = gr.Textbox(
label="Text Color", value="black")
with gr.Row():
dep_output = gr.HTML(value=dependency(
DEFAULT_TEXT, True, True, False, DEFAULT_COLOR, "black", DEFAULT_MODEL)[0])
with gr.Row():
with gr.Column(scale=0.25):
dep_button = gr.Button(
"Update Dependency Parser", variant="primary").style(full_width=False)
with gr.Column():
dep_download_button = gr.HTML(
value=download_svg(dep_output.value))
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Entity Recognizer](https://spacy.io/usage/visualizers#ent)")
gr.Markdown(
"The entity visualizer highlights named entities and their labels in a text")
with gr.Column(scale=0.25):
ent_model = gr.Textbox(
label="Model", value="en_core_web_sm")
ent_input = gr.CheckboxGroup(
DEFAULT_ENTS, value=DEFAULT_ENTS, label="Entity Types")
ent_output = gr.HTML(value=entity(
DEFAULT_TEXT, DEFAULT_ENTS, DEFAULT_MODEL)[0])
with gr.Row():
with gr.Column(scale=0.25):
ent_button = gr.Button(
"Update Entity Recognizer", variant="primary")
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Token Properties](https://spacy.io/usage/linguistic-features)")
gr.Markdown(
"When you put in raw text to spaCy, it returns a Doc object with different linguistic features")
with gr.Column(scale=0.25):
tok_model = gr.Textbox(
label="Model", value="en_core_web_sm")
with gr.Row():
with gr.Column(scale=0.5):
tok_input = gr.CheckboxGroup(
DEFAULT_TOK_ATTR, value=DEFAULT_TOK_ATTR, label="Token Attributes", interactive=True)
tok_output = gr.Dataframe(headers=DEFAULT_TOK_ATTR, value=default_token(
DEFAULT_TEXT, DEFAULT_TOK_ATTR, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
with gr.Row():
with gr.Column(scale=0.25):
tok_button = gr.Button(
"Update Token Properties", variant="primary")
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Word and Phrase Similarity](https://spacy.io/usage/linguistic-features#vectors-similarity)")
gr.Markdown(
"Words and spans have similarity ratings based on their word vectors")
with gr.Column(scale=0.25):
sim_model = gr.Textbox(
label="Model", value="en_core_web_md")
with gr.Row():
with gr.Column(scale=0.25):
sim_text1 = gr.Textbox(
value="Apple", label="Word 1", interactive=True,)
with gr.Column(scale=0.25):
sim_text2 = gr.Textbox(
value="U.K. startup", label="Word 2", interactive=True,)
with gr.Column(scale=0.25):
sim_output = gr.Textbox(
label="Similarity Score", value="0.12")
with gr.Row():
with gr.Column(scale=0.25):
sim_random_button = gr.Button("Update random words")
with gr.Column(scale=0.25):
sim_button = gr.Button("Update similarity", variant="primary")
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Spans](https://spacy.io/usage/visualizers#span)")
gr.Markdown(
"The span visualizer highlights overlapping spans in a text")
with gr.Column(scale=0.25):
span_model = gr.Textbox(
label="Model", value="en_core_web_sm")
with gr.Row():
with gr.Column(scale=0.3):
span1 = gr.Textbox(
label="Span 1", value="U.K. startup", placeholder="Input a part of the sentence")
with gr.Column(scale=0.3):
label1 = gr.Textbox(value="ORG",
label="Label for Span 1")
with gr.Row():
with gr.Column(scale=0.3):
span2 = gr.Textbox(
label="Span 2", value="U.K.", placeholder="Input another part of the sentence")
with gr.Column(scale=0.3):
label2 = gr.Textbox(value="GPE",
label="Label for Span 2")
span_output = gr.HTML(value=span(
DEFAULT_TEXT, "U.K. startup", "U.K.", "ORG", "GPE", DEFAULT_MODEL)[0])
with gr.Row():
with gr.Column(scale=0.25):
span_button = gr.Button("Update Spans", variant="primary")
with gr.Box():
with gr.Column():
with gr.Row():
with gr.Column(scale=0.75):
gr.Markdown(
"## [🔗 Noun chunks](https://spacy.io/usage/linguistic-features#noun-chunks)")
gr.Markdown(
"You can use `doc.noun_chunks` to extract noun phrases from a doc object")
with gr.Column(scale=0.25):
noun_model = gr.Textbox(
label="Model", value="en_core_web_sm")
noun_output = gr.Dataframe(headers=NOUN_ATTR, value=default_noun_chunks(
DEFAULT_TEXT, DEFAULT_MODEL)[0], overflow_row_behaviour="paginate")
with gr.Row():
with gr.Column(scale=0.25):
noun_button = gr.Button(
"Update Noun Chunks", variant="primary")
# change text based on model input
model_input.change(get_text, inputs=[model_input], outputs=text_input)
# main button - update all components
button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
button.click(
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
button.click(
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
button.click(vectors, inputs=[sim_text1,
sim_text2, model_input], outputs=[sim_output, sim_model])
button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
button.click(
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
# individual component buttons
dep_button.click(dependency, inputs=[
text_input, col_punct, col_phrase, compact, bg, text, model_input], outputs=[dep_output, dep_download_button, dep_model])
ent_button.click(
entity, inputs=[text_input, ent_input, model_input], outputs=[ent_output, ent_model])
tok_button.click(
token, inputs=[text_input, tok_input, model_input], outputs=[tok_output, tok_model])
sim_button.click(vectors, inputs=[
sim_text1, sim_text2, model_input], outputs=[sim_output, sim_model])
sim_random_button.click(random_vectors, inputs=[text_input, model_input], outputs=[
sim_output, sim_text1, sim_text2, sim_model])
span_button.click(
span, inputs=[text_input, span1, span2, label1, label2, model_input], outputs=[span_output, span_model])
noun_button.click(
noun_chunks, inputs=[text_input, model_input], outputs=[noun_output, noun_model])
demo.launch()