sdxs / demo_webcam.py
soft-boy's picture
Upload folder using huggingface_hub
affe6d7 verified
import random
import numpy as np
from PIL import Image
import base64
from io import BytesIO
import torch
import torchvision.transforms.functional as F
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
import gradio as gr
device = "mps" # Linux & Windows
weight_type = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
controlnet = ControlNetModel.from_pretrained(
"IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type
).to(device)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type
)
pipe.to(device)
style_list = [
{
"name": "No Style",
"prompt": "{prompt}",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
},
# Additional styles omitted for brevity
]
styles = {k["name"]: k["prompt"] for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "No Style"
MAX_SEED = np.iinfo(np.int32).max
def pil_image_to_data_url(img, format="PNG"):
buffered = BytesIO()
img.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/{format.lower()};base64,{img_str}"
def run(
image,
prompt,
prompt_template,
style_name,
controlnet_conditioning_scale,
device_type="GPU",
param_dtype='torch.float16',
):
if device_type == "CPU":
device = "cpu"
param_dtype = 'torch.float32'
else:
device = "cuda"
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)
print(f"prompt: {prompt}")
if image is None:
ones = Image.new("L", (512, 512), 255)
temp_url = pil_image_to_data_url(ones)
return ones, gr.update(link=temp_url), gr.update(link=temp_url)
prompt = prompt_template.replace("{prompt}", prompt)
control_image = image.convert("RGB")
control_image = Image.fromarray(255 - np.array(control_image))
output_pil = pipe(
prompt=prompt,
image=control_image,
width=512,
height=512,
guidance_scale=0.0,
num_inference_steps=1,
num_images_per_prompt=1,
output_type="pil",
controlnet_conditioning_scale=controlnet_conditioning_scale,
).images[0]
input_image_url = pil_image_to_data_url(control_image)
output_image_url = pil_image_to_data_url(output_pil)
return (
output_pil,
gr.update(link=input_image_url),
gr.update(link=output_image_url),
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown("# SDXS-512-DreamShaper-Webcam")
with gr.Row():
with gr.Column():
gr.Markdown("## INPUT")
# Replace canvas with webcam image
image = gr.Image(
source="webcam", type="pil", label="Webcam Image", interactive=True
)
prompt = gr.Textbox(label="Prompt", value="", show_label=True)
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
prompt_template = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME])
controlnet_conditioning_scale = gr.Slider(label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8)
device_choices = ['GPU','CPU']
device_type = gr.Radio(device_choices, label='Device', value=device_choices[0], interactive=True)
dtype_choices = ['torch.float16','torch.float32']
param_dtype = gr.Radio(dtype_choices, label='torch.weight_type', value=dtype_choices[0], interactive=True)
with gr.Column():
gr.Markdown("## OUTPUT")
result = gr.Image(label="Result", show_label=False, show_download_button=True)
inputs = [image, prompt, prompt_template, style, controlnet_conditioning_scale, device_type, param_dtype]
outputs = [result]
prompt.submit(fn=run, inputs=inputs, outputs=outputs)
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_template])
image.change(run, inputs=inputs, outputs=outputs)
if __name__ == "__main__":
demo.queue().launch(debug=True)