|
import random |
|
import numpy as np |
|
from PIL import Image |
|
import base64 |
|
from io import BytesIO |
|
|
|
import torch |
|
import torchvision.transforms.functional as F |
|
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline |
|
import gradio as gr |
|
|
|
device = "mps" |
|
weight_type = torch.float16 |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type |
|
).to(device) |
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
"IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type |
|
) |
|
pipe.to(device) |
|
|
|
style_list = [ |
|
{ |
|
"name": "No Style", |
|
"prompt": "{prompt}", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
}, |
|
|
|
] |
|
|
|
styles = {k["name"]: k["prompt"] for k in style_list} |
|
STYLE_NAMES = list(styles.keys()) |
|
DEFAULT_STYLE_NAME = "No Style" |
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
def pil_image_to_data_url(img, format="PNG"): |
|
buffered = BytesIO() |
|
img.save(buffered, format=format) |
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
return f"data:image/{format.lower()};base64,{img_str}" |
|
|
|
|
|
def run( |
|
image, |
|
prompt, |
|
prompt_template, |
|
style_name, |
|
controlnet_conditioning_scale, |
|
device_type="GPU", |
|
param_dtype='torch.float16', |
|
): |
|
if device_type == "CPU": |
|
device = "cpu" |
|
param_dtype = 'torch.float32' |
|
else: |
|
device = "cuda" |
|
|
|
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32) |
|
|
|
print(f"prompt: {prompt}") |
|
if image is None: |
|
ones = Image.new("L", (512, 512), 255) |
|
temp_url = pil_image_to_data_url(ones) |
|
return ones, gr.update(link=temp_url), gr.update(link=temp_url) |
|
prompt = prompt_template.replace("{prompt}", prompt) |
|
control_image = image.convert("RGB") |
|
control_image = Image.fromarray(255 - np.array(control_image)) |
|
|
|
output_pil = pipe( |
|
prompt=prompt, |
|
image=control_image, |
|
width=512, |
|
height=512, |
|
guidance_scale=0.0, |
|
num_inference_steps=1, |
|
num_images_per_prompt=1, |
|
output_type="pil", |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
).images[0] |
|
|
|
input_image_url = pil_image_to_data_url(control_image) |
|
output_image_url = pil_image_to_data_url(output_pil) |
|
return ( |
|
output_pil, |
|
gr.update(link=input_image_url), |
|
gr.update(link=output_image_url), |
|
) |
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown("# SDXS-512-DreamShaper-Webcam") |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("## INPUT") |
|
|
|
image = gr.Image( |
|
source="webcam", type="pil", label="Webcam Image", interactive=True |
|
) |
|
|
|
prompt = gr.Textbox(label="Prompt", value="", show_label=True) |
|
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) |
|
prompt_template = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME]) |
|
|
|
controlnet_conditioning_scale = gr.Slider(label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8) |
|
|
|
device_choices = ['GPU','CPU'] |
|
device_type = gr.Radio(device_choices, label='Device', value=device_choices[0], interactive=True) |
|
|
|
dtype_choices = ['torch.float16','torch.float32'] |
|
param_dtype = gr.Radio(dtype_choices, label='torch.weight_type', value=dtype_choices[0], interactive=True) |
|
|
|
with gr.Column(): |
|
gr.Markdown("## OUTPUT") |
|
result = gr.Image(label="Result", show_label=False, show_download_button=True) |
|
|
|
inputs = [image, prompt, prompt_template, style, controlnet_conditioning_scale, device_type, param_dtype] |
|
outputs = [result] |
|
prompt.submit(fn=run, inputs=inputs, outputs=outputs) |
|
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_template]) |
|
image.change(run, inputs=inputs, outputs=outputs) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(debug=True) |