Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- .gitignore +115 -0
- LICENSE +201 -0
- README.md +128 -8
- demo.py +117 -0
- demo_anime.py +119 -0
- demo_sketch.py +324 -0
- demo_webcam.py +128 -0
- demo_webcam_photo.py +20 -0
- images/control_imgs.png +3 -0
- images/imgs.png +3 -0
- images/intro.png +3 -0
- images/method1.png +0 -0
- images/method2.png +0 -0
- images/method3.png +0 -0
- images/sketch.gif +0 -0
- images/speed.png +0 -0
- requirements.txt +13 -0
- style.css +213 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/control_imgs.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
images/imgs.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
images/intro.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
src
|
2 |
+
data
|
3 |
+
_backup
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
*.egg-info/
|
28 |
+
.installed.cfg
|
29 |
+
*.egg
|
30 |
+
MANIFEST
|
31 |
+
|
32 |
+
# PyInstaller
|
33 |
+
# Usually these files are written by a python script from a template
|
34 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
35 |
+
*.manifest
|
36 |
+
*.spec
|
37 |
+
|
38 |
+
# Installer logs
|
39 |
+
pip-log.txt
|
40 |
+
pip-delete-this-directory.txt
|
41 |
+
|
42 |
+
# Unit test / coverage reports
|
43 |
+
htmlcov/
|
44 |
+
.tox/
|
45 |
+
.nox/
|
46 |
+
.coverage
|
47 |
+
.coverage.*
|
48 |
+
.cache
|
49 |
+
nosetests.xml
|
50 |
+
coverage.xml
|
51 |
+
*.cover
|
52 |
+
.hypothesis/
|
53 |
+
.pytest_cache/
|
54 |
+
|
55 |
+
# Translations
|
56 |
+
*.mo
|
57 |
+
*.pot
|
58 |
+
|
59 |
+
# Django stuff:
|
60 |
+
*.log
|
61 |
+
local_settings.py
|
62 |
+
db.sqlite3
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# celery beat schedule file
|
88 |
+
celerybeat-schedule
|
89 |
+
|
90 |
+
# SageMath parsed files
|
91 |
+
*.sage.py
|
92 |
+
|
93 |
+
# Environments
|
94 |
+
.env
|
95 |
+
.venv
|
96 |
+
env/
|
97 |
+
venv/
|
98 |
+
ENV/
|
99 |
+
env.bak/
|
100 |
+
venv.bak/
|
101 |
+
|
102 |
+
# Spyder project settings
|
103 |
+
.spyderproject
|
104 |
+
.spyproject
|
105 |
+
|
106 |
+
# Rope project settings
|
107 |
+
.ropeproject
|
108 |
+
|
109 |
+
# mkdocs documentation
|
110 |
+
/site
|
111 |
+
|
112 |
+
# mypy
|
113 |
+
.mypy_cache/
|
114 |
+
.dmypy.json
|
115 |
+
dmypy.json
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,12 +1,132 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: sdxs
|
3 |
+
app_file: demo_sketch.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 3.43.1
|
|
|
|
|
6 |
---
|
7 |
+
<div align="center">
|
8 |
|
9 |
+
## SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions
|
10 |
+
|
11 |
+
[![Project](https://img.shields.io/badge/Home-Project-green?logo=Houzz&logoColor=white)](https://idkiro.github.io/sdxs)
|
12 |
+
[![Paper](https://img.shields.io/badge/arxiv-Paper-blue?logo=arxiv)](https://arxiv.org/abs/2403.16627)
|
13 |
+
[![SDXS-512-0.9](https://img.shields.io/badge/🤗Model-512--0.9-gold)](https://huggingface.co/IDKiro/sdxs-512-0.9)
|
14 |
+
[![SDXS-512-DreamShaper](https://img.shields.io/badge/🤗Model-512--DreamShaper-gold)](https://huggingface.co/IDKiro/sdxs-512-dreamshaper)
|
15 |
+
[![SDXS-512-DreamShaper-Anime](https://img.shields.io/badge/🤗Model-512--DreamShaper--Anime-gold)](https://huggingface.co/IDKiro/sdxs-512-dreamshaper-anime)
|
16 |
+
[![SDXS-512-DreamShaper-Sketch](https://img.shields.io/badge/🤗Model-512--DreamShaper--Sketch-gold)](https://huggingface.co/IDKiro/sdxs-512-dreamshaper-sketch)
|
17 |
+
[![SDXS-512-DreamShaper-Demo](https://img.shields.io/badge/🤗Demo-Text2Image-pink)](https://huggingface.co/spaces/IDKiro/SDXS-512-DreamShaper)
|
18 |
+
[![SDXS-512-DreamShaper-Anime-Demo](https://img.shields.io/badge/🤗Demo-Text2Image--Anime-pink)](https://huggingface.co/spaces/IDKiro/SDXS-512-DreamShaper-Anime)
|
19 |
+
[![SDXS-512-DreamShaper-Sketch-Demo](https://img.shields.io/badge/🤗Demo-Sketch2Image-pink)](https://huggingface.co/spaces/IDKiro/SDXS-512-DreamShaper-Sketch)
|
20 |
+
|
21 |
+
|
22 |
+
*Yuda Song, Zehao Sun, Xuanwu Yin*
|
23 |
+
|
24 |
+
</div>
|
25 |
+
|
26 |
+
We present two models, SDXS-512 and SDXS-1024, achieving inference speeds of approximately <b>100 FPS</b> (30x faster than SD v1.5) and <b>30 FPS</b> (60x faster than SDXL) on a single GPU. Assuming the image generation time is limited to <b>1 second</b>, then SDXL can only use 16 NFEs to produce a slightly blurry image, while SDXS-1024 can generate 30 clear images.
|
27 |
+
|
28 |
+
![](images/intro.png)
|
29 |
+
|
30 |
+
Moreover, our proposed method can also train ControlNet, offering promising applications in image-conditioned control and facilitating efficient image-to-image translation.
|
31 |
+
|
32 |
+
<p align="left" >
|
33 |
+
<img src="images\sketch.gif" width="800" />
|
34 |
+
</p>
|
35 |
+
|
36 |
+
## 🔥News
|
37 |
+
|
38 |
+
- **April 11, 2024:** [SDXS-512-DreamShaper-Anime](https://huggingface.co/IDKiro/sdxs-512-dreamshaper-anime) is released. We also create some Gradio demo on Hugging Face.
|
39 |
+
- **April 10, 2024:** [SDXS-512-DreamShaper](https://huggingface.co/IDKiro/sdxs-512-dreamshaper) and [SDXS-512-DreamShaper-Sketch](https://huggingface.co/IDKiro/sdxs-512-dreamshaper-sketch) are released. We also upload our demo code.
|
40 |
+
- **March 25, 2024:** [SDXS-512-0.9](https://huggingface.co/IDKiro/sdxs-512-0.9) is released, it is an old version of SDXS-512.
|
41 |
+
|
42 |
+
## ⚡️Demo
|
43 |
+
|
44 |
+
Create a new environment:
|
45 |
+
|
46 |
+
```sh
|
47 |
+
conda create -n sdxs
|
48 |
+
```
|
49 |
+
|
50 |
+
Activate the new environment:
|
51 |
+
|
52 |
+
```sh
|
53 |
+
conda activate sdxs
|
54 |
+
```
|
55 |
+
|
56 |
+
Install requirements:
|
57 |
+
|
58 |
+
```sh
|
59 |
+
conda install python=3.10 pytorch=2.2.1 torchvision torchaudio pytorch-cuda=11.8 xformers=0.0.25 -c pytorch -c nvidia -c xformers
|
60 |
+
pip install -r requirements.txt
|
61 |
+
```
|
62 |
+
|
63 |
+
Run text-to-image demo:
|
64 |
+
|
65 |
+
```sh
|
66 |
+
python demo.py
|
67 |
+
```
|
68 |
+
|
69 |
+
Run anime-style text-to-image (LoRA) demo:
|
70 |
+
|
71 |
+
```sh
|
72 |
+
python demo_anime.py
|
73 |
+
```
|
74 |
+
|
75 |
+
Run sketch-to-image (ControlNet) demo:
|
76 |
+
|
77 |
+
```sh
|
78 |
+
python demo_sketch.py
|
79 |
+
```
|
80 |
+
|
81 |
+
## 💡Train
|
82 |
+
|
83 |
+
I found that [DMD2](https://github.com/tianweiy/DMD2) release the training code, and its training scheme is identical to the new version of SDXS, so you can refer to it.
|
84 |
+
Unfortunately, the SDXS training code is not allowed to be open-sourced and will most likely not be updated again.
|
85 |
+
|
86 |
+
## ✒️Method
|
87 |
+
|
88 |
+
### Model Acceleration
|
89 |
+
|
90 |
+
We train an extremely light-weight image decoder to mimic the original VAE decoder’s output through a combination of output distillation loss and GAN loss. We also leverage the block removal distillation strategy to efficiently transfer the knowledge from the original U-Net to a more compact version.
|
91 |
+
|
92 |
+
![](images/method1.png)
|
93 |
+
|
94 |
+
SDXS demonstrates efficiency far surpassing that of the base models, even achieving image generation at 100 FPS for 512x512 images and 30 FPS for 1024x1024 images on the GPU.
|
95 |
+
|
96 |
+
![](images/speed.png)
|
97 |
+
|
98 |
+
### Text-to-Image
|
99 |
+
|
100 |
+
To reduce the NFEs, we suggest straightening the sampling trajectory and quickly finetuning the multi-step model into a one-step model by replacing the distillation loss function with the proposed feature matching loss. Then, we extend the Diff-Instruct training strategy, using the gradient of the proposed feature matching loss to replace the gradient provided by score distillation in the latter half of the timestep.
|
101 |
+
|
102 |
+
![](images/method2.png)
|
103 |
+
|
104 |
+
Despite a noticeable downsizing in both the sizes of the models and the number of sampling steps required, the prompt-following capability of SDXS-512 remains superior to that of SD v1.5. This observation is consistently validated in the performance of SDXS-1024 as well.
|
105 |
+
|
106 |
+
![](images/imgs.png)
|
107 |
+
|
108 |
+
### Image-to-Image
|
109 |
+
|
110 |
+
We extend our proposed training strategy to the training of ControlNet, relying on adding the pretrained ControlNet to the score function.
|
111 |
+
|
112 |
+
![](images/method3.png)
|
113 |
+
|
114 |
+
We demonstrate its efficacy in facilitating image-to-image conversions utilizing ControlNet, specifically for transformations involving canny edges and depth maps.
|
115 |
+
|
116 |
+
![](images/control_imgs.png)
|
117 |
+
|
118 |
+
|
119 |
+
## Citation
|
120 |
+
|
121 |
+
If you find this work useful for your research, please cite our paper:
|
122 |
+
|
123 |
+
```bibtex
|
124 |
+
@article{song2024sdxs,
|
125 |
+
author = {Yuda Song, Zehao Sun, Xuanwu Yin},
|
126 |
+
title = {SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions},
|
127 |
+
journal = {arxiv},
|
128 |
+
year = {2024},
|
129 |
+
}
|
130 |
+
```
|
131 |
+
|
132 |
+
**Acknowledgment**: the demo code is based on https://github.com/GaParmar/img2img-turbo.
|
demo.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
from io import BytesIO
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import PIL.Image
|
6 |
+
import torch
|
7 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny
|
8 |
+
|
9 |
+
device = "mps" # Linux & Windows
|
10 |
+
weight_type = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
|
11 |
+
|
12 |
+
pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-dreamshaper", torch_dtype=weight_type)
|
13 |
+
pipe.to(torch_device=device, torch_dtype=weight_type)
|
14 |
+
|
15 |
+
vae_tiny = AutoencoderTiny.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae")
|
16 |
+
vae_tiny.to(device, dtype=weight_type)
|
17 |
+
|
18 |
+
vae_large = AutoencoderKL.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae_large")
|
19 |
+
vae_tiny.to(device, dtype=weight_type)
|
20 |
+
|
21 |
+
def pil_image_to_data_url(img, format="PNG"):
|
22 |
+
buffered = BytesIO()
|
23 |
+
img.save(buffered, format=format)
|
24 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
25 |
+
return f"data:image/{format.lower()};base64,{img_str}"
|
26 |
+
|
27 |
+
|
28 |
+
def run(
|
29 |
+
prompt: str,
|
30 |
+
device_type="GPU",
|
31 |
+
vae_type=None,
|
32 |
+
param_dtype='torch.float16',
|
33 |
+
) -> PIL.Image.Image:
|
34 |
+
if vae_type == "tiny vae":
|
35 |
+
pipe.vae = vae_tiny
|
36 |
+
elif vae_type == "large vae":
|
37 |
+
pipe.vae = vae_large
|
38 |
+
|
39 |
+
if device_type == "CPU":
|
40 |
+
device = "cpu"
|
41 |
+
param_dtype = 'torch.float32'
|
42 |
+
else:
|
43 |
+
device = "cuda"
|
44 |
+
|
45 |
+
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)
|
46 |
+
|
47 |
+
result = pipe(
|
48 |
+
prompt=prompt,
|
49 |
+
guidance_scale=0.0,
|
50 |
+
num_inference_steps=1,
|
51 |
+
output_type="pil",
|
52 |
+
).images[0]
|
53 |
+
|
54 |
+
result_url = pil_image_to_data_url(result)
|
55 |
+
|
56 |
+
return (result, result_url)
|
57 |
+
|
58 |
+
|
59 |
+
examples = [
|
60 |
+
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
|
61 |
+
]
|
62 |
+
|
63 |
+
with gr.Blocks(css="style.css") as demo:
|
64 |
+
gr.Markdown("# SDXS-512-DreamShaper")
|
65 |
+
with gr.Group():
|
66 |
+
with gr.Row():
|
67 |
+
with gr.Column(min_width=685):
|
68 |
+
with gr.Row():
|
69 |
+
prompt = gr.Text(
|
70 |
+
label="Prompt",
|
71 |
+
show_label=False,
|
72 |
+
max_lines=1,
|
73 |
+
placeholder="Enter your prompt",
|
74 |
+
container=False,
|
75 |
+
)
|
76 |
+
run_button = gr.Button("Run", scale=0)
|
77 |
+
|
78 |
+
device_choices = ['GPU','CPU']
|
79 |
+
device_type = gr.Radio(device_choices, label='Device',
|
80 |
+
value=device_choices[0],
|
81 |
+
interactive=True,
|
82 |
+
info='Please choose GPU if you have a GPU.')
|
83 |
+
|
84 |
+
vae_choices = ['tiny vae','large vae']
|
85 |
+
vae_type = gr.Radio(vae_choices, label='Image Decoder Type',
|
86 |
+
value=vae_choices[0],
|
87 |
+
interactive=True,
|
88 |
+
info='To save GPU memory, use tiny vae. For better quality, use large vae.')
|
89 |
+
|
90 |
+
dtype_choices = ['torch.float16','torch.float32']
|
91 |
+
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type',
|
92 |
+
value=dtype_choices[0],
|
93 |
+
interactive=True,
|
94 |
+
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
|
95 |
+
|
96 |
+
download_output = gr.Button("Download output", elem_id="download_output")
|
97 |
+
|
98 |
+
with gr.Column(min_width=512):
|
99 |
+
result = gr.Image(label="Result", height=512, width=512, elem_id="output_image", show_label=False, show_download_button=True)
|
100 |
+
|
101 |
+
gr.Examples(
|
102 |
+
examples=examples,
|
103 |
+
inputs=prompt,
|
104 |
+
outputs=result,
|
105 |
+
fn=run
|
106 |
+
)
|
107 |
+
|
108 |
+
demo.load(None,None,None)
|
109 |
+
|
110 |
+
inputs = [prompt, device_type, vae_type, param_dtype]
|
111 |
+
outputs = [result, download_output]
|
112 |
+
prompt.submit(fn=run, inputs=inputs, outputs=outputs)
|
113 |
+
run_button.click(fn=run, inputs=inputs, outputs=outputs)
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
# demo.queue().launch(debug=True, server_port=8080)
|
117 |
+
demo.queue().launch(debug=True, server_port=8080)
|
demo_anime.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
from io import BytesIO
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import PIL.Image
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny
|
9 |
+
from peft import PeftModel
|
10 |
+
|
11 |
+
device = "cuda" # Linux & Windows
|
12 |
+
weight_type = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
|
13 |
+
|
14 |
+
pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-dreamshaper", torch_dtype=weight_type)
|
15 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, "IDKiro/sdxs-512-dreamshaper-anime")
|
16 |
+
pipe.to(torch_device=device, torch_dtype=weight_type)
|
17 |
+
|
18 |
+
vae_tiny = AutoencoderTiny.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae")
|
19 |
+
vae_tiny.to(device, dtype=weight_type)
|
20 |
+
|
21 |
+
vae_large = AutoencoderKL.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae_large")
|
22 |
+
vae_tiny.to(device, dtype=weight_type)
|
23 |
+
|
24 |
+
def pil_image_to_data_url(img, format="PNG"):
|
25 |
+
buffered = BytesIO()
|
26 |
+
img.save(buffered, format=format)
|
27 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
28 |
+
return f"data:image/{format.lower()};base64,{img_str}"
|
29 |
+
|
30 |
+
|
31 |
+
def run(
|
32 |
+
prompt: str,
|
33 |
+
device_type="GPU",
|
34 |
+
vae_type=None,
|
35 |
+
param_dtype='torch.float16',
|
36 |
+
) -> PIL.Image.Image:
|
37 |
+
if vae_type == "tiny vae":
|
38 |
+
pipe.vae = vae_tiny
|
39 |
+
elif vae_type == "large vae":
|
40 |
+
pipe.vae = vae_large
|
41 |
+
|
42 |
+
if device_type == "CPU":
|
43 |
+
device = "cpu"
|
44 |
+
param_dtype = 'torch.float32'
|
45 |
+
else:
|
46 |
+
device = "cuda"
|
47 |
+
|
48 |
+
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)
|
49 |
+
|
50 |
+
result = pipe(
|
51 |
+
prompt=prompt,
|
52 |
+
guidance_scale=0.0,
|
53 |
+
num_inference_steps=1,
|
54 |
+
output_type="pil",
|
55 |
+
).images[0]
|
56 |
+
|
57 |
+
result_url = pil_image_to_data_url(result)
|
58 |
+
|
59 |
+
return (result, result_url)
|
60 |
+
|
61 |
+
|
62 |
+
examples = [
|
63 |
+
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
|
64 |
+
]
|
65 |
+
|
66 |
+
with gr.Blocks(css="style.css") as demo:
|
67 |
+
gr.Markdown("# SDXS-512-DreamShaper Anime")
|
68 |
+
with gr.Group():
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column(min_width=685):
|
71 |
+
with gr.Row():
|
72 |
+
prompt = gr.Text(
|
73 |
+
label="Prompt",
|
74 |
+
show_label=False,
|
75 |
+
max_lines=1,
|
76 |
+
placeholder="Enter your prompt",
|
77 |
+
container=False,
|
78 |
+
)
|
79 |
+
run_button = gr.Button("Run", scale=0)
|
80 |
+
|
81 |
+
device_choices = ['GPU','CPU']
|
82 |
+
device_type = gr.Radio(device_choices, label='Device',
|
83 |
+
value=device_choices[0],
|
84 |
+
interactive=True,
|
85 |
+
info='Please choose GPU if you have a GPU.')
|
86 |
+
|
87 |
+
vae_choices = ['tiny vae','large vae']
|
88 |
+
vae_type = gr.Radio(vae_choices, label='Image Decoder Type',
|
89 |
+
value=vae_choices[0],
|
90 |
+
interactive=True,
|
91 |
+
info='To save GPU memory, use tiny vae. For better quality, use large vae.')
|
92 |
+
|
93 |
+
dtype_choices = ['torch.float16','torch.float32']
|
94 |
+
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type',
|
95 |
+
value=dtype_choices[0],
|
96 |
+
interactive=True,
|
97 |
+
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
|
98 |
+
|
99 |
+
download_output = gr.Button("Download output", elem_id="download_output")
|
100 |
+
|
101 |
+
with gr.Column(min_width=512):
|
102 |
+
result = gr.Image(label="Result", height=512, width=512, elem_id="output_image", show_label=False, show_download_button=True)
|
103 |
+
|
104 |
+
gr.Examples(
|
105 |
+
examples=examples,
|
106 |
+
inputs=prompt,
|
107 |
+
outputs=result,
|
108 |
+
fn=run
|
109 |
+
)
|
110 |
+
|
111 |
+
demo.load(None,None,None)
|
112 |
+
|
113 |
+
inputs = [prompt, device_type, vae_type, param_dtype]
|
114 |
+
outputs = [result, download_output]
|
115 |
+
prompt.submit(fn=run, inputs=inputs, outputs=outputs)
|
116 |
+
run_button.click(fn=run, inputs=inputs, outputs=outputs)
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
demo.queue().launch(debug=True)
|
demo_sketch.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms.functional as F
|
9 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
device = "mps" # Linux & Windows
|
13 |
+
weight_type = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
|
14 |
+
|
15 |
+
controlnet = ControlNetModel.from_pretrained(
|
16 |
+
"IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type
|
17 |
+
).to(device)
|
18 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
19 |
+
"IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type
|
20 |
+
)
|
21 |
+
pipe.to(device)
|
22 |
+
|
23 |
+
style_list = [
|
24 |
+
{
|
25 |
+
"name": "No Style",
|
26 |
+
"prompt": "{prompt}",
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"name": "Cinematic",
|
30 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"name": "3D Model",
|
34 |
+
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "Anime",
|
38 |
+
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"name": "Digital Art",
|
42 |
+
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"name": "Photographic",
|
46 |
+
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"name": "Pixel art",
|
50 |
+
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"name": "Fantasy art",
|
54 |
+
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"name": "Neonpunk",
|
58 |
+
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"name": "Manga",
|
62 |
+
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
|
63 |
+
},
|
64 |
+
]
|
65 |
+
|
66 |
+
styles = {k["name"]: k["prompt"] for k in style_list}
|
67 |
+
STYLE_NAMES = list(styles.keys())
|
68 |
+
DEFAULT_STYLE_NAME = "No Style"
|
69 |
+
MAX_SEED = np.iinfo(np.int32).max
|
70 |
+
|
71 |
+
|
72 |
+
def pil_image_to_data_url(img, format="PNG"):
|
73 |
+
buffered = BytesIO()
|
74 |
+
img.save(buffered, format=format)
|
75 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
76 |
+
return f"data:image/{format.lower()};base64,{img_str}"
|
77 |
+
|
78 |
+
|
79 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
80 |
+
if randomize_seed:
|
81 |
+
seed = random.randint(0, MAX_SEED)
|
82 |
+
return seed
|
83 |
+
|
84 |
+
|
85 |
+
def run(
|
86 |
+
image,
|
87 |
+
prompt,
|
88 |
+
prompt_template,
|
89 |
+
style_name,
|
90 |
+
controlnet_conditioning_scale,
|
91 |
+
device_type="GPU",
|
92 |
+
param_dtype='torch.float16',
|
93 |
+
):
|
94 |
+
if device_type == "CPU":
|
95 |
+
device = "cpu"
|
96 |
+
param_dtype = 'torch.float32'
|
97 |
+
else:
|
98 |
+
device = "mps"
|
99 |
+
|
100 |
+
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)
|
101 |
+
|
102 |
+
print(f"prompt: {prompt}")
|
103 |
+
print("sketch updated")
|
104 |
+
if image is None:
|
105 |
+
ones = Image.new("L", (512, 512), 255)
|
106 |
+
temp_url = pil_image_to_data_url(ones)
|
107 |
+
return ones, gr.update(link=temp_url), gr.update(link=temp_url)
|
108 |
+
prompt = prompt_template.replace("{prompt}", prompt)
|
109 |
+
control_image = image.convert("RGB")
|
110 |
+
control_image = Image.fromarray(255 - np.array(control_image))
|
111 |
+
|
112 |
+
output_pil = pipe(
|
113 |
+
prompt=prompt,
|
114 |
+
image=control_image,
|
115 |
+
width=512,
|
116 |
+
height=512,
|
117 |
+
guidance_scale=0.0,
|
118 |
+
num_inference_steps=1,
|
119 |
+
num_images_per_prompt=1,
|
120 |
+
output_type="pil",
|
121 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
122 |
+
).images[0]
|
123 |
+
|
124 |
+
input_sketch_url = pil_image_to_data_url(control_image)
|
125 |
+
output_image_url = pil_image_to_data_url(output_pil)
|
126 |
+
return (
|
127 |
+
output_pil,
|
128 |
+
gr.update(link=input_sketch_url),
|
129 |
+
gr.update(link=output_image_url),
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
def update_canvas(use_line, use_eraser):
|
134 |
+
if use_eraser:
|
135 |
+
_color = "#ffffff"
|
136 |
+
brush_size = 20
|
137 |
+
if use_line:
|
138 |
+
_color = "#000000"
|
139 |
+
brush_size = 8
|
140 |
+
return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True)
|
141 |
+
|
142 |
+
|
143 |
+
def upload_sketch(file):
|
144 |
+
_img = Image.open(file.name)
|
145 |
+
_img = _img.convert("L")
|
146 |
+
return gr.update(value=_img, source="upload", interactive=True)
|
147 |
+
|
148 |
+
|
149 |
+
scripts = """
|
150 |
+
async () => {
|
151 |
+
globalThis.theSketchDownloadFunction = () => {
|
152 |
+
console.log("test")
|
153 |
+
var link = document.createElement("a");
|
154 |
+
dataUrl = document.getElementById('download_sketch').href
|
155 |
+
link.setAttribute("href", dataUrl)
|
156 |
+
link.setAttribute("download", "sketch.png")
|
157 |
+
document.body.appendChild(link); // Required for Firefox
|
158 |
+
link.click();
|
159 |
+
document.body.removeChild(link); // Clean up
|
160 |
+
|
161 |
+
// also call the output download function
|
162 |
+
theOutputDownloadFunction();
|
163 |
+
return false
|
164 |
+
}
|
165 |
+
|
166 |
+
globalThis.theOutputDownloadFunction = () => {
|
167 |
+
console.log("test output download function")
|
168 |
+
var link = document.createElement("a");
|
169 |
+
dataUrl = document.getElementById('download_output').href
|
170 |
+
link.setAttribute("href", dataUrl);
|
171 |
+
link.setAttribute("download", "output.png");
|
172 |
+
document.body.appendChild(link); // Required for Firefox
|
173 |
+
link.click();
|
174 |
+
document.body.removeChild(link); // Clean up
|
175 |
+
return false
|
176 |
+
}
|
177 |
+
|
178 |
+
globalThis.UNDO_SKETCH_FUNCTION = () => {
|
179 |
+
console.log("undo sketch function")
|
180 |
+
var button_undo = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(1)');
|
181 |
+
// Create a new 'click' event
|
182 |
+
var event = new MouseEvent('click', {
|
183 |
+
'view': window,
|
184 |
+
'bubbles': true,
|
185 |
+
'cancelable': true
|
186 |
+
});
|
187 |
+
button_undo.dispatchEvent(event);
|
188 |
+
}
|
189 |
+
|
190 |
+
globalThis.DELETE_SKETCH_FUNCTION = () => {
|
191 |
+
console.log("delete sketch function")
|
192 |
+
var button_del = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(2)');
|
193 |
+
// Create a new 'click' event
|
194 |
+
var event = new MouseEvent('click', {
|
195 |
+
'view': window,
|
196 |
+
'bubbles': true,
|
197 |
+
'cancelable': true
|
198 |
+
});
|
199 |
+
button_del.dispatchEvent(event);
|
200 |
+
}
|
201 |
+
|
202 |
+
globalThis.togglePencil = () => {
|
203 |
+
el_pencil = document.getElementById('my-toggle-pencil');
|
204 |
+
el_pencil.classList.toggle('clicked');
|
205 |
+
// simulate a click on the gradio button
|
206 |
+
btn_gradio = document.querySelector("#cb-line > label > input");
|
207 |
+
var event = new MouseEvent('click', {
|
208 |
+
'view': window,
|
209 |
+
'bubbles': true,
|
210 |
+
'cancelable': true
|
211 |
+
});
|
212 |
+
btn_gradio.dispatchEvent(event);
|
213 |
+
if (el_pencil.classList.contains('clicked')) {
|
214 |
+
document.getElementById('my-toggle-eraser').classList.remove('clicked');
|
215 |
+
document.getElementById('my-div-pencil').style.backgroundColor = "gray";
|
216 |
+
document.getElementById('my-div-eraser').style.backgroundColor = "white";
|
217 |
+
}
|
218 |
+
else {
|
219 |
+
document.getElementById('my-toggle-eraser').classList.add('clicked');
|
220 |
+
document.getElementById('my-div-pencil').style.backgroundColor = "white";
|
221 |
+
document.getElementById('my-div-eraser').style.backgroundColor = "gray";
|
222 |
+
}
|
223 |
+
|
224 |
+
}
|
225 |
+
|
226 |
+
globalThis.toggleEraser = () => {
|
227 |
+
element = document.getElementById('my-toggle-eraser');
|
228 |
+
element.classList.toggle('clicked');
|
229 |
+
// simulate a click on the gradio button
|
230 |
+
btn_gradio = document.querySelector("#cb-eraser > label > input");
|
231 |
+
var event = new MouseEvent('click', {
|
232 |
+
'view': window,
|
233 |
+
'bubbles': true,
|
234 |
+
'cancelable': true
|
235 |
+
});
|
236 |
+
btn_gradio.dispatchEvent(event);
|
237 |
+
if (element.classList.contains('clicked')) {
|
238 |
+
document.getElementById('my-toggle-pencil').classList.remove('clicked');
|
239 |
+
document.getElementById('my-div-pencil').style.backgroundColor = "white";
|
240 |
+
document.getElementById('my-div-eraser').style.backgroundColor = "gray";
|
241 |
+
}
|
242 |
+
else {
|
243 |
+
document.getElementById('my-toggle-pencil').classList.add('clicked');
|
244 |
+
document.getElementById('my-div-pencil').style.backgroundColor = "gray";
|
245 |
+
document.getElementById('my-div-eraser').style.backgroundColor = "white";
|
246 |
+
}
|
247 |
+
}
|
248 |
+
}
|
249 |
+
"""
|
250 |
+
|
251 |
+
with gr.Blocks(css="style.css") as demo:
|
252 |
+
gr.Markdown("# SDXS-512-DreamShaper-Sketch")
|
253 |
+
# these are hidden buttons that are used to trigger the canvas changes
|
254 |
+
line = gr.Checkbox(label="line", value=False, elem_id="cb-line")
|
255 |
+
eraser = gr.Checkbox(label="eraser", value=False, elem_id="cb-eraser")
|
256 |
+
with gr.Row(elem_id="main_row"):
|
257 |
+
with gr.Column(elem_id="column_input"):
|
258 |
+
gr.Markdown("## INPUT", elem_id="input_header")
|
259 |
+
image = gr.Image(
|
260 |
+
source="canvas", tool="color-sketch", type="pil", image_mode="L",
|
261 |
+
invert_colors=True, shape=(512, 512), brush_radius=8, height=440, width=440,
|
262 |
+
brush_color="#000000", interactive=True, show_download_button=True, elem_id="input_image", show_label=False)
|
263 |
+
download_sketch = gr.Button("Download sketch", scale=1, elem_id="download_sketch")
|
264 |
+
|
265 |
+
gr.HTML("""
|
266 |
+
<div class="button-row">
|
267 |
+
<div id="my-div-pencil" class="pad2"> <button id="my-toggle-pencil" onclick="return togglePencil(this)"></button> </div>
|
268 |
+
<div id="my-div-eraser" class="pad2"> <button id="my-toggle-eraser" onclick="return toggleEraser(this)"></button> </div>
|
269 |
+
<div class="pad2"> <button id="my-button-undo" onclick="return UNDO_SKETCH_FUNCTION(this)"></button> </div>
|
270 |
+
<div class="pad2"> <button id="my-button-clear" onclick="return DELETE_SKETCH_FUNCTION(this)"></button> </div>
|
271 |
+
<div class="pad2"> <button href="TODO" download="image" id="my-button-down" onclick='return theSketchDownloadFunction()'></button> </div>
|
272 |
+
</div>
|
273 |
+
""")
|
274 |
+
# gr.Markdown("## Prompt", elem_id="tools_header")
|
275 |
+
prompt = gr.Textbox(label="Prompt", value="", show_label=True)
|
276 |
+
with gr.Row():
|
277 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1)
|
278 |
+
prompt_temp = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME], scale=2, max_lines=1)
|
279 |
+
|
280 |
+
controlnet_conditioning_scale = gr.Slider(label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8)
|
281 |
+
|
282 |
+
|
283 |
+
device_choices = ['GPU','CPU']
|
284 |
+
device_type = gr.Radio(device_choices, label='Device',
|
285 |
+
value=device_choices[0],
|
286 |
+
interactive=True,
|
287 |
+
info='Please choose GPU if you have a GPU.')
|
288 |
+
|
289 |
+
dtype_choices = ['torch.float16','torch.float32']
|
290 |
+
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type',
|
291 |
+
value=dtype_choices[0],
|
292 |
+
interactive=True,
|
293 |
+
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
|
294 |
+
|
295 |
+
|
296 |
+
with gr.Column(elem_id="column_process", min_width=50, scale=0.4):
|
297 |
+
gr.Markdown("## SDXS-Sketch", elem_id="description")
|
298 |
+
run_button = gr.Button("Run", min_width=50)
|
299 |
+
|
300 |
+
with gr.Column(elem_id="column_output"):
|
301 |
+
gr.Markdown("## OUTPUT", elem_id="output_header")
|
302 |
+
result = gr.Image(label="Result", height=440, width=440, elem_id="output_image", show_label=False, show_download_button=True)
|
303 |
+
download_output = gr.Button("Download output", elem_id="download_output")
|
304 |
+
gr.Markdown("### Instructions")
|
305 |
+
gr.Markdown("**1**. Enter a text prompt (e.g. cat)")
|
306 |
+
gr.Markdown("**2**. Start sketching")
|
307 |
+
gr.Markdown("**3**. Change the image style using a style template")
|
308 |
+
gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider")
|
309 |
+
|
310 |
+
|
311 |
+
eraser.change(fn=lambda x: gr.update(value=not x), inputs=[eraser], outputs=[line]).then(update_canvas, [line, eraser], [image])
|
312 |
+
line.change(fn=lambda x: gr.update(value=not x), inputs=[line], outputs=[eraser]).then(update_canvas, [line, eraser], [image])
|
313 |
+
|
314 |
+
demo.load(None,None,None,_js=scripts)
|
315 |
+
inputs = [image, prompt, prompt_temp, style, controlnet_conditioning_scale, device_type, param_dtype]
|
316 |
+
outputs = [result, download_sketch, download_output]
|
317 |
+
prompt.submit(fn=run, inputs=inputs, outputs=outputs)
|
318 |
+
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then(
|
319 |
+
fn=run, inputs=inputs, outputs=outputs,)
|
320 |
+
run_button.click(fn=run, inputs=inputs, outputs=outputs)
|
321 |
+
image.change(run, inputs=inputs, outputs=outputs,)
|
322 |
+
|
323 |
+
if __name__ == "__main__":
|
324 |
+
demo.queue().launch(debug=True, share=True)
|
demo_webcam.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms.functional as F
|
9 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
device = "mps" # Linux & Windows
|
13 |
+
weight_type = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
|
14 |
+
|
15 |
+
controlnet = ControlNetModel.from_pretrained(
|
16 |
+
"IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type
|
17 |
+
).to(device)
|
18 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
19 |
+
"IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type
|
20 |
+
)
|
21 |
+
pipe.to(device)
|
22 |
+
|
23 |
+
style_list = [
|
24 |
+
{
|
25 |
+
"name": "No Style",
|
26 |
+
"prompt": "{prompt}",
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"name": "Cinematic",
|
30 |
+
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
31 |
+
},
|
32 |
+
# Additional styles omitted for brevity
|
33 |
+
]
|
34 |
+
|
35 |
+
styles = {k["name"]: k["prompt"] for k in style_list}
|
36 |
+
STYLE_NAMES = list(styles.keys())
|
37 |
+
DEFAULT_STYLE_NAME = "No Style"
|
38 |
+
MAX_SEED = np.iinfo(np.int32).max
|
39 |
+
|
40 |
+
|
41 |
+
def pil_image_to_data_url(img, format="PNG"):
|
42 |
+
buffered = BytesIO()
|
43 |
+
img.save(buffered, format=format)
|
44 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
45 |
+
return f"data:image/{format.lower()};base64,{img_str}"
|
46 |
+
|
47 |
+
|
48 |
+
def run(
|
49 |
+
image,
|
50 |
+
prompt,
|
51 |
+
prompt_template,
|
52 |
+
style_name,
|
53 |
+
controlnet_conditioning_scale,
|
54 |
+
device_type="GPU",
|
55 |
+
param_dtype='torch.float16',
|
56 |
+
):
|
57 |
+
if device_type == "CPU":
|
58 |
+
device = "cpu"
|
59 |
+
param_dtype = 'torch.float32'
|
60 |
+
else:
|
61 |
+
device = "cuda"
|
62 |
+
|
63 |
+
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)
|
64 |
+
|
65 |
+
print(f"prompt: {prompt}")
|
66 |
+
if image is None:
|
67 |
+
ones = Image.new("L", (512, 512), 255)
|
68 |
+
temp_url = pil_image_to_data_url(ones)
|
69 |
+
return ones, gr.update(link=temp_url), gr.update(link=temp_url)
|
70 |
+
prompt = prompt_template.replace("{prompt}", prompt)
|
71 |
+
control_image = image.convert("RGB")
|
72 |
+
control_image = Image.fromarray(255 - np.array(control_image))
|
73 |
+
|
74 |
+
output_pil = pipe(
|
75 |
+
prompt=prompt,
|
76 |
+
image=control_image,
|
77 |
+
width=512,
|
78 |
+
height=512,
|
79 |
+
guidance_scale=0.0,
|
80 |
+
num_inference_steps=1,
|
81 |
+
num_images_per_prompt=1,
|
82 |
+
output_type="pil",
|
83 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
84 |
+
).images[0]
|
85 |
+
|
86 |
+
input_image_url = pil_image_to_data_url(control_image)
|
87 |
+
output_image_url = pil_image_to_data_url(output_pil)
|
88 |
+
return (
|
89 |
+
output_pil,
|
90 |
+
gr.update(link=input_image_url),
|
91 |
+
gr.update(link=output_image_url),
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
with gr.Blocks(css="style.css") as demo:
|
96 |
+
gr.Markdown("# SDXS-512-DreamShaper-Webcam")
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column():
|
99 |
+
gr.Markdown("## INPUT")
|
100 |
+
# Replace canvas with webcam image
|
101 |
+
image = gr.Image(
|
102 |
+
source="webcam", type="pil", label="Webcam Image", interactive=True
|
103 |
+
)
|
104 |
+
|
105 |
+
prompt = gr.Textbox(label="Prompt", value="", show_label=True)
|
106 |
+
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
107 |
+
prompt_template = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME])
|
108 |
+
|
109 |
+
controlnet_conditioning_scale = gr.Slider(label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8)
|
110 |
+
|
111 |
+
device_choices = ['GPU','CPU']
|
112 |
+
device_type = gr.Radio(device_choices, label='Device', value=device_choices[0], interactive=True)
|
113 |
+
|
114 |
+
dtype_choices = ['torch.float16','torch.float32']
|
115 |
+
param_dtype = gr.Radio(dtype_choices, label='torch.weight_type', value=dtype_choices[0], interactive=True)
|
116 |
+
|
117 |
+
with gr.Column():
|
118 |
+
gr.Markdown("## OUTPUT")
|
119 |
+
result = gr.Image(label="Result", show_label=False, show_download_button=True)
|
120 |
+
|
121 |
+
inputs = [image, prompt, prompt_template, style, controlnet_conditioning_scale, device_type, param_dtype]
|
122 |
+
outputs = [result]
|
123 |
+
prompt.submit(fn=run, inputs=inputs, outputs=outputs)
|
124 |
+
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_template])
|
125 |
+
image.change(run, inputs=inputs, outputs=outputs)
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
demo.queue().launch(debug=True)
|
demo_webcam_photo.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
# Function to display webcam image on canvas
|
4 |
+
def display_webcam_image(img):
|
5 |
+
return img
|
6 |
+
|
7 |
+
# Gradio app interface
|
8 |
+
with gr.Blocks() as demo:
|
9 |
+
gr.Markdown("## Webcam Capture and Display")
|
10 |
+
# Webcam component
|
11 |
+
webcam = gr.Image(source="webcam", label="Webcam Capture", streaming=True)
|
12 |
+
# Canvas to display captured image
|
13 |
+
canvas = gr.Image(label="Captured Image")
|
14 |
+
|
15 |
+
# Button to capture image from webcam and display on canvas
|
16 |
+
capture_button = gr.Button("Capture Image")
|
17 |
+
capture_button.click(fn=display_webcam_image, inputs=webcam, outputs=canvas)
|
18 |
+
|
19 |
+
# Launch the app
|
20 |
+
demo.launch()
|
images/control_imgs.png
ADDED
Git LFS Details
|
images/imgs.png
ADDED
Git LFS Details
|
images/intro.png
ADDED
Git LFS Details
|
images/method1.png
ADDED
images/method2.png
ADDED
images/method3.png
ADDED
images/sketch.gif
ADDED
images/speed.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
einops>=0.6.1
|
2 |
+
numpy>=1.24.4
|
3 |
+
opencv-python==4.6.0.66
|
4 |
+
pillow>=9.5.0
|
5 |
+
scipy==1.11.1
|
6 |
+
timm>=0.9.2
|
7 |
+
tqdm>=4.65.0
|
8 |
+
diffusers==0.25.1
|
9 |
+
gradio==3.43.1
|
10 |
+
tokenizers
|
11 |
+
transformers
|
12 |
+
accelerate
|
13 |
+
peft
|
style.css
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css');
|
2 |
+
|
3 |
+
/* the outermost contrained of the app */
|
4 |
+
.main{
|
5 |
+
display: flex;
|
6 |
+
justify-content: center;
|
7 |
+
align-items: center;
|
8 |
+
width: 1200px;
|
9 |
+
}
|
10 |
+
|
11 |
+
/* #main_row{
|
12 |
+
|
13 |
+
} */
|
14 |
+
|
15 |
+
/* hide this class */
|
16 |
+
.svelte-p4aq0j {
|
17 |
+
display: none;
|
18 |
+
}
|
19 |
+
|
20 |
+
.wrap.svelte-p4aq0j.svelte-p4aq0j {
|
21 |
+
display: none;
|
22 |
+
}
|
23 |
+
|
24 |
+
#download_sketch{
|
25 |
+
display: none;
|
26 |
+
}
|
27 |
+
|
28 |
+
#download_output{
|
29 |
+
display: none;
|
30 |
+
}
|
31 |
+
|
32 |
+
#column_input, #column_output{
|
33 |
+
width: 500px;
|
34 |
+
display: flex;
|
35 |
+
/* justify-content: center; */
|
36 |
+
align-items: center;
|
37 |
+
}
|
38 |
+
|
39 |
+
#tools_header, #input_header, #output_header, #process_header {
|
40 |
+
display: flex;
|
41 |
+
justify-content: center;
|
42 |
+
align-items: center;
|
43 |
+
width: 400px;
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
#nn{
|
48 |
+
width: 100px;
|
49 |
+
height: 100px;
|
50 |
+
}
|
51 |
+
|
52 |
+
|
53 |
+
#column_process{
|
54 |
+
display: flex;
|
55 |
+
justify-content: center; /* Center horizontally */
|
56 |
+
align-items: center; /* Center vertically */
|
57 |
+
height: 600px;
|
58 |
+
}
|
59 |
+
|
60 |
+
/* this is the "pix2pix-turbo" above the process button */
|
61 |
+
#description > span{
|
62 |
+
display: flex;
|
63 |
+
justify-content: center; /* Center horizontally */
|
64 |
+
align-items: center; /* Center vertically */
|
65 |
+
}
|
66 |
+
|
67 |
+
/* this is the "UNDO_BUTTON, X_BUTTON" */
|
68 |
+
div.svelte-1030q2h{
|
69 |
+
width: 30px;
|
70 |
+
height: 30px;
|
71 |
+
display: none;
|
72 |
+
}
|
73 |
+
|
74 |
+
|
75 |
+
#component-5 > div{
|
76 |
+
border: 0px;
|
77 |
+
box-shadow: none;
|
78 |
+
}
|
79 |
+
|
80 |
+
#cb-eraser, #cb-line{
|
81 |
+
display: none;
|
82 |
+
}
|
83 |
+
|
84 |
+
/* eraser text */
|
85 |
+
#cb-eraser > label > span{
|
86 |
+
display: none;
|
87 |
+
}
|
88 |
+
#cb-line > label > span{
|
89 |
+
display: none;
|
90 |
+
}
|
91 |
+
|
92 |
+
|
93 |
+
.button-row {
|
94 |
+
display: flex;
|
95 |
+
justify-content: center;
|
96 |
+
align-items: center;
|
97 |
+
height: 50px;
|
98 |
+
border: 0px;
|
99 |
+
}
|
100 |
+
|
101 |
+
#my-toggle-pencil{
|
102 |
+
background-image: url("https://icons.getbootstrap.com/assets/icons/pencil.svg");
|
103 |
+
background-color: white;
|
104 |
+
background-size: cover;
|
105 |
+
margin: 0px;
|
106 |
+
box-shadow: none;
|
107 |
+
width: 40px;
|
108 |
+
height: 40px;
|
109 |
+
}
|
110 |
+
|
111 |
+
#my-toggle-pencil.clicked{
|
112 |
+
background-image: url("https://icons.getbootstrap.com/assets/icons/pencil-fill.svg");
|
113 |
+
transform: scale(0.98);
|
114 |
+
background-color: gray;
|
115 |
+
background-size: cover;
|
116 |
+
/* background-size: 95%;
|
117 |
+
background-position: center; */
|
118 |
+
/* border: 2px solid #000; */
|
119 |
+
margin: 0px;
|
120 |
+
box-shadow: none;
|
121 |
+
width: 40px;
|
122 |
+
height: 40px;
|
123 |
+
}
|
124 |
+
|
125 |
+
|
126 |
+
#my-toggle-eraser{
|
127 |
+
background-image: url("https://icons.getbootstrap.com/assets/icons/eraser.svg");
|
128 |
+
background-color: white;
|
129 |
+
background-color: white;
|
130 |
+
background-size: cover;
|
131 |
+
margin: 0px;
|
132 |
+
box-shadow: none;
|
133 |
+
width: 40px;
|
134 |
+
height: 40px;
|
135 |
+
}
|
136 |
+
|
137 |
+
#my-toggle-eraser.clicked{
|
138 |
+
background-image: url("https://icons.getbootstrap.com/assets/icons/eraser-fill.svg");
|
139 |
+
transform: scale(0.98);
|
140 |
+
background-color: gray;
|
141 |
+
background-size: cover;
|
142 |
+
margin: 0px;
|
143 |
+
box-shadow: none;
|
144 |
+
width: 40px;
|
145 |
+
height: 40px;
|
146 |
+
}
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
#my-button-undo{
|
151 |
+
background-image: url("https://icons.getbootstrap.com/assets/icons/arrow-counterclockwise.svg");
|
152 |
+
background-color: white;
|
153 |
+
background-size: cover;
|
154 |
+
margin: 0px;
|
155 |
+
box-shadow: none;
|
156 |
+
width: 40px;
|
157 |
+
height: 40px;
|
158 |
+
}
|
159 |
+
|
160 |
+
#my-button-clear{
|
161 |
+
background-image: url("https://icons.getbootstrap.com/assets/icons/x-lg.svg");
|
162 |
+
background-color: white;
|
163 |
+
background-size: cover;
|
164 |
+
margin: 0px;
|
165 |
+
box-shadow: none;
|
166 |
+
width: 40px;
|
167 |
+
height: 40px;
|
168 |
+
|
169 |
+
}
|
170 |
+
|
171 |
+
|
172 |
+
#my-button-down{
|
173 |
+
background-image: url("https://icons.getbootstrap.com/assets/icons/arrow-down.svg");
|
174 |
+
background-color: white;
|
175 |
+
background-size: cover;
|
176 |
+
margin: 0px;
|
177 |
+
box-shadow: none;
|
178 |
+
width: 40px;
|
179 |
+
height: 40px;
|
180 |
+
|
181 |
+
}
|
182 |
+
|
183 |
+
.pad2{
|
184 |
+
padding: 2px;
|
185 |
+
background-color: white;
|
186 |
+
border: 2px solid #000;
|
187 |
+
margin: 10px;
|
188 |
+
display: flex;
|
189 |
+
justify-content: center; /* Center horizontally */
|
190 |
+
align-items: center; /* Center vertically */
|
191 |
+
}
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
#output_image, #input_image{
|
197 |
+
border-radius: 0px;
|
198 |
+
border: 5px solid #000;
|
199 |
+
border-width: none;
|
200 |
+
}
|
201 |
+
|
202 |
+
|
203 |
+
#output_image > img{
|
204 |
+
border: 5px solid #000;
|
205 |
+
border-radius: 0px;
|
206 |
+
border-width: none;
|
207 |
+
}
|
208 |
+
|
209 |
+
#input_image > div.image-container.svelte-p3y7hu > div.wrap.svelte-yigbas > canvas:nth-child(1){
|
210 |
+
border: 5px solid #000;
|
211 |
+
border-radius: 0px;
|
212 |
+
border-width: none;
|
213 |
+
}
|