sdxs / demo_sketch.py
soft-boy's picture
Upload folder using huggingface_hub
affe6d7 verified
raw
history blame
13.5 kB
import random
import numpy as np
from PIL import Image
import base64
from io import BytesIO
import torch
import torchvision.transforms.functional as F
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
import gradio as gr
device = "mps" # Linux & Windows
weight_type = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
controlnet = ControlNetModel.from_pretrained(
"IDKiro/sdxs-512-dreamshaper-sketch", torch_dtype=weight_type
).to(device)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"IDKiro/sdxs-512-dreamshaper", controlnet=controlnet, torch_dtype=weight_type
)
pipe.to(device)
style_list = [
{
"name": "No Style",
"prompt": "{prompt}",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
},
]
styles = {k["name"]: k["prompt"] for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "No Style"
MAX_SEED = np.iinfo(np.int32).max
def pil_image_to_data_url(img, format="PNG"):
buffered = BytesIO()
img.save(buffered, format=format)
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/{format.lower()};base64,{img_str}"
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def run(
image,
prompt,
prompt_template,
style_name,
controlnet_conditioning_scale,
device_type="GPU",
param_dtype='torch.float16',
):
if device_type == "CPU":
device = "cpu"
param_dtype = 'torch.float32'
else:
device = "mps"
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)
print(f"prompt: {prompt}")
print("sketch updated")
if image is None:
ones = Image.new("L", (512, 512), 255)
temp_url = pil_image_to_data_url(ones)
return ones, gr.update(link=temp_url), gr.update(link=temp_url)
prompt = prompt_template.replace("{prompt}", prompt)
control_image = image.convert("RGB")
control_image = Image.fromarray(255 - np.array(control_image))
output_pil = pipe(
prompt=prompt,
image=control_image,
width=512,
height=512,
guidance_scale=0.0,
num_inference_steps=1,
num_images_per_prompt=1,
output_type="pil",
controlnet_conditioning_scale=controlnet_conditioning_scale,
).images[0]
input_sketch_url = pil_image_to_data_url(control_image)
output_image_url = pil_image_to_data_url(output_pil)
return (
output_pil,
gr.update(link=input_sketch_url),
gr.update(link=output_image_url),
)
def update_canvas(use_line, use_eraser):
if use_eraser:
_color = "#ffffff"
brush_size = 20
if use_line:
_color = "#000000"
brush_size = 8
return gr.update(brush_radius=brush_size, brush_color=_color, interactive=True)
def upload_sketch(file):
_img = Image.open(file.name)
_img = _img.convert("L")
return gr.update(value=_img, source="upload", interactive=True)
scripts = """
async () => {
globalThis.theSketchDownloadFunction = () => {
console.log("test")
var link = document.createElement("a");
dataUrl = document.getElementById('download_sketch').href
link.setAttribute("href", dataUrl)
link.setAttribute("download", "sketch.png")
document.body.appendChild(link); // Required for Firefox
link.click();
document.body.removeChild(link); // Clean up
// also call the output download function
theOutputDownloadFunction();
return false
}
globalThis.theOutputDownloadFunction = () => {
console.log("test output download function")
var link = document.createElement("a");
dataUrl = document.getElementById('download_output').href
link.setAttribute("href", dataUrl);
link.setAttribute("download", "output.png");
document.body.appendChild(link); // Required for Firefox
link.click();
document.body.removeChild(link); // Clean up
return false
}
globalThis.UNDO_SKETCH_FUNCTION = () => {
console.log("undo sketch function")
var button_undo = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(1)');
// Create a new 'click' event
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
button_undo.dispatchEvent(event);
}
globalThis.DELETE_SKETCH_FUNCTION = () => {
console.log("delete sketch function")
var button_del = document.querySelector('#input_image > div.image-container.svelte-p3y7hu > div.svelte-s6ybro > button:nth-child(2)');
// Create a new 'click' event
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
button_del.dispatchEvent(event);
}
globalThis.togglePencil = () => {
el_pencil = document.getElementById('my-toggle-pencil');
el_pencil.classList.toggle('clicked');
// simulate a click on the gradio button
btn_gradio = document.querySelector("#cb-line > label > input");
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
btn_gradio.dispatchEvent(event);
if (el_pencil.classList.contains('clicked')) {
document.getElementById('my-toggle-eraser').classList.remove('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "gray";
document.getElementById('my-div-eraser').style.backgroundColor = "white";
}
else {
document.getElementById('my-toggle-eraser').classList.add('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "white";
document.getElementById('my-div-eraser').style.backgroundColor = "gray";
}
}
globalThis.toggleEraser = () => {
element = document.getElementById('my-toggle-eraser');
element.classList.toggle('clicked');
// simulate a click on the gradio button
btn_gradio = document.querySelector("#cb-eraser > label > input");
var event = new MouseEvent('click', {
'view': window,
'bubbles': true,
'cancelable': true
});
btn_gradio.dispatchEvent(event);
if (element.classList.contains('clicked')) {
document.getElementById('my-toggle-pencil').classList.remove('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "white";
document.getElementById('my-div-eraser').style.backgroundColor = "gray";
}
else {
document.getElementById('my-toggle-pencil').classList.add('clicked');
document.getElementById('my-div-pencil').style.backgroundColor = "gray";
document.getElementById('my-div-eraser').style.backgroundColor = "white";
}
}
}
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown("# SDXS-512-DreamShaper-Sketch")
# these are hidden buttons that are used to trigger the canvas changes
line = gr.Checkbox(label="line", value=False, elem_id="cb-line")
eraser = gr.Checkbox(label="eraser", value=False, elem_id="cb-eraser")
with gr.Row(elem_id="main_row"):
with gr.Column(elem_id="column_input"):
gr.Markdown("## INPUT", elem_id="input_header")
image = gr.Image(
source="canvas", tool="color-sketch", type="pil", image_mode="L",
invert_colors=True, shape=(512, 512), brush_radius=8, height=440, width=440,
brush_color="#000000", interactive=True, show_download_button=True, elem_id="input_image", show_label=False)
download_sketch = gr.Button("Download sketch", scale=1, elem_id="download_sketch")
gr.HTML("""
<div class="button-row">
<div id="my-div-pencil" class="pad2"> <button id="my-toggle-pencil" onclick="return togglePencil(this)"></button> </div>
<div id="my-div-eraser" class="pad2"> <button id="my-toggle-eraser" onclick="return toggleEraser(this)"></button> </div>
<div class="pad2"> <button id="my-button-undo" onclick="return UNDO_SKETCH_FUNCTION(this)"></button> </div>
<div class="pad2"> <button id="my-button-clear" onclick="return DELETE_SKETCH_FUNCTION(this)"></button> </div>
<div class="pad2"> <button href="TODO" download="image" id="my-button-down" onclick='return theSketchDownloadFunction()'></button> </div>
</div>
""")
# gr.Markdown("## Prompt", elem_id="tools_header")
prompt = gr.Textbox(label="Prompt", value="", show_label=True)
with gr.Row():
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, scale=1)
prompt_temp = gr.Textbox(label="Prompt Style Template", value=styles[DEFAULT_STYLE_NAME], scale=2, max_lines=1)
controlnet_conditioning_scale = gr.Slider(label="Control Strength", minimum=0, maximum=1, step=0.01, value=0.8)
device_choices = ['GPU','CPU']
device_type = gr.Radio(device_choices, label='Device',
value=device_choices[0],
interactive=True,
info='Please choose GPU if you have a GPU.')
dtype_choices = ['torch.float16','torch.float32']
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type',
value=dtype_choices[0],
interactive=True,
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
with gr.Column(elem_id="column_process", min_width=50, scale=0.4):
gr.Markdown("## SDXS-Sketch", elem_id="description")
run_button = gr.Button("Run", min_width=50)
with gr.Column(elem_id="column_output"):
gr.Markdown("## OUTPUT", elem_id="output_header")
result = gr.Image(label="Result", height=440, width=440, elem_id="output_image", show_label=False, show_download_button=True)
download_output = gr.Button("Download output", elem_id="download_output")
gr.Markdown("### Instructions")
gr.Markdown("**1**. Enter a text prompt (e.g. cat)")
gr.Markdown("**2**. Start sketching")
gr.Markdown("**3**. Change the image style using a style template")
gr.Markdown("**4**. Adjust the effect of sketch guidance using the slider")
eraser.change(fn=lambda x: gr.update(value=not x), inputs=[eraser], outputs=[line]).then(update_canvas, [line, eraser], [image])
line.change(fn=lambda x: gr.update(value=not x), inputs=[line], outputs=[eraser]).then(update_canvas, [line, eraser], [image])
demo.load(None,None,None,_js=scripts)
inputs = [image, prompt, prompt_temp, style, controlnet_conditioning_scale, device_type, param_dtype]
outputs = [result, download_sketch, download_output]
prompt.submit(fn=run, inputs=inputs, outputs=outputs)
style.change(lambda x: styles[x], inputs=[style], outputs=[prompt_temp]).then(
fn=run, inputs=inputs, outputs=outputs,)
run_button.click(fn=run, inputs=inputs, outputs=outputs)
image.change(run, inputs=inputs, outputs=outputs,)
if __name__ == "__main__":
demo.queue().launch(debug=True, share=True)