Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from detectron2.config import configurable | |
from detectron2.layers import Conv2d, ShapeSpec, cat | |
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou | |
from detectron2.utils.events import get_event_storage | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from detectron2.utils.registry import Registry | |
from ..anchor_generator import build_anchor_generator | |
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss | |
from ..matcher import Matcher | |
from ..sampling import subsample_labels | |
from .build import PROPOSAL_GENERATOR_REGISTRY | |
from .proposal_utils import find_top_rpn_proposals | |
RPN_HEAD_REGISTRY = Registry("RPN_HEAD") | |
RPN_HEAD_REGISTRY.__doc__ = """ | |
Registry for RPN heads, which take feature maps and perform | |
objectness classification and bounding box regression for anchors. | |
The registered object will be called with `obj(cfg, input_shape)`. | |
The call should return a `nn.Module` object. | |
""" | |
""" | |
Shape shorthand in this module: | |
N: number of images in the minibatch | |
L: number of feature maps per image on which RPN is run | |
A: number of cell anchors (must be the same for all feature maps) | |
Hi, Wi: height and width of the i-th feature map | |
B: size of the box parameterization | |
Naming convention: | |
objectness: refers to the binary classification of an anchor as object vs. not object. | |
deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box | |
transform (see :class:`box_regression.Box2BoxTransform`), or 5d for rotated boxes. | |
pred_objectness_logits: predicted objectness scores in [-inf, +inf]; use | |
sigmoid(pred_objectness_logits) to estimate P(object). | |
gt_labels: ground-truth binary classification labels for objectness | |
pred_anchor_deltas: predicted box2box transform deltas | |
gt_anchor_deltas: ground-truth box2box transform deltas | |
""" | |
def build_rpn_head(cfg, input_shape): | |
""" | |
Build an RPN head defined by `cfg.MODEL.RPN.HEAD_NAME`. | |
""" | |
name = cfg.MODEL.RPN.HEAD_NAME | |
return RPN_HEAD_REGISTRY.get(name)(cfg, input_shape) | |
class StandardRPNHead(nn.Module): | |
""" | |
Standard RPN classification and regression heads described in :paper:`Faster R-CNN`. | |
Uses a 3x3 conv to produce a shared hidden state from which one 1x1 conv predicts | |
objectness logits for each anchor and a second 1x1 conv predicts bounding-box deltas | |
specifying how to deform each anchor into an object proposal. | |
""" | |
def __init__( | |
self, *, in_channels: int, num_anchors: int, box_dim: int = 4, conv_dims: List[int] = (-1,) | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
in_channels (int): number of input feature channels. When using multiple | |
input features, they must have the same number of channels. | |
num_anchors (int): number of anchors to predict for *each spatial position* | |
on the feature map. The total number of anchors for each | |
feature map will be `num_anchors * H * W`. | |
box_dim (int): dimension of a box, which is also the number of box regression | |
predictions to make for each anchor. An axis aligned box has | |
box_dim=4, while a rotated box has box_dim=5. | |
conv_dims (list[int]): a list of integers representing the output channels | |
of N conv layers. Set it to -1 to use the same number of output channels | |
as input channels. | |
""" | |
super().__init__() | |
cur_channels = in_channels | |
# Keeping the old variable names and structure for backwards compatiblity. | |
# Otherwise the old checkpoints will fail to load. | |
if len(conv_dims) == 1: | |
out_channels = cur_channels if conv_dims[0] == -1 else conv_dims[0] | |
# 3x3 conv for the hidden representation | |
self.conv = self._get_rpn_conv(cur_channels, out_channels) | |
cur_channels = out_channels | |
else: | |
self.conv = nn.Sequential() | |
for k, conv_dim in enumerate(conv_dims): | |
out_channels = cur_channels if conv_dim == -1 else conv_dim | |
if out_channels <= 0: | |
raise ValueError( | |
f"Conv output channels should be greater than 0. Got {out_channels}" | |
) | |
conv = self._get_rpn_conv(cur_channels, out_channels) | |
self.conv.add_module(f"conv{k}", conv) | |
cur_channels = out_channels | |
# 1x1 conv for predicting objectness logits | |
self.objectness_logits = nn.Conv2d(cur_channels, num_anchors, kernel_size=1, stride=1) | |
# 1x1 conv for predicting box2box transform deltas | |
self.anchor_deltas = nn.Conv2d(cur_channels, num_anchors * box_dim, kernel_size=1, stride=1) | |
# Keeping the order of weights initialization same for backwards compatiblility. | |
for layer in self.modules(): | |
if isinstance(layer, nn.Conv2d): | |
nn.init.normal_(layer.weight, std=0.01) | |
nn.init.constant_(layer.bias, 0) | |
def _get_rpn_conv(self, in_channels, out_channels): | |
return Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
activation=nn.ReLU(), | |
) | |
def from_config(cls, cfg, input_shape): | |
# Standard RPN is shared across levels: | |
in_channels = [s.channels for s in input_shape] | |
assert len(set(in_channels)) == 1, "Each level must have the same channel!" | |
in_channels = in_channels[0] | |
# RPNHead should take the same input as anchor generator | |
# NOTE: it assumes that creating an anchor generator does not have unwanted side effect. | |
anchor_generator = build_anchor_generator(cfg, input_shape) | |
num_anchors = anchor_generator.num_anchors | |
box_dim = anchor_generator.box_dim | |
assert ( | |
len(set(num_anchors)) == 1 | |
), "Each level must have the same number of anchors per spatial position" | |
return { | |
"in_channels": in_channels, | |
"num_anchors": num_anchors[0], | |
"box_dim": box_dim, | |
"conv_dims": cfg.MODEL.RPN.CONV_DIMS, | |
} | |
def forward(self, features: List[torch.Tensor]): | |
""" | |
Args: | |
features (list[Tensor]): list of feature maps | |
Returns: | |
list[Tensor]: A list of L elements. | |
Element i is a tensor of shape (N, A, Hi, Wi) representing | |
the predicted objectness logits for all anchors. A is the number of cell anchors. | |
list[Tensor]: A list of L elements. Element i is a tensor of shape | |
(N, A*box_dim, Hi, Wi) representing the predicted "deltas" used to transform anchors | |
to proposals. | |
""" | |
pred_objectness_logits = [] | |
pred_anchor_deltas = [] | |
for x in features: | |
t = self.conv(x) | |
pred_objectness_logits.append(self.objectness_logits(t)) | |
pred_anchor_deltas.append(self.anchor_deltas(t)) | |
return pred_objectness_logits, pred_anchor_deltas | |
class RPN(nn.Module): | |
""" | |
Region Proposal Network, introduced by :paper:`Faster R-CNN`. | |
""" | |
def __init__( | |
self, | |
*, | |
in_features: List[str], | |
head: nn.Module, | |
anchor_generator: nn.Module, | |
anchor_matcher: Matcher, | |
box2box_transform: Box2BoxTransform, | |
batch_size_per_image: int, | |
positive_fraction: float, | |
pre_nms_topk: Tuple[float, float], | |
post_nms_topk: Tuple[float, float], | |
nms_thresh: float = 0.7, | |
min_box_size: float = 0.0, | |
anchor_boundary_thresh: float = -1.0, | |
loss_weight: Union[float, Dict[str, float]] = 1.0, | |
box_reg_loss_type: str = "smooth_l1", | |
smooth_l1_beta: float = 0.0, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
in_features (list[str]): list of names of input features to use | |
head (nn.Module): a module that predicts logits and regression deltas | |
for each level from a list of per-level features | |
anchor_generator (nn.Module): a module that creates anchors from a | |
list of features. Usually an instance of :class:`AnchorGenerator` | |
anchor_matcher (Matcher): label the anchors by matching them with ground truth. | |
box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to | |
instance boxes | |
batch_size_per_image (int): number of anchors per image to sample for training | |
positive_fraction (float): fraction of foreground anchors to sample for training | |
pre_nms_topk (tuple[float]): (train, test) that represents the | |
number of top k proposals to select before NMS, in | |
training and testing. | |
post_nms_topk (tuple[float]): (train, test) that represents the | |
number of top k proposals to select after NMS, in | |
training and testing. | |
nms_thresh (float): NMS threshold used to de-duplicate the predicted proposals | |
min_box_size (float): remove proposal boxes with any side smaller than this threshold, | |
in the unit of input image pixels | |
anchor_boundary_thresh (float): legacy option | |
loss_weight (float|dict): weights to use for losses. Can be single float for weighting | |
all rpn losses together, or a dict of individual weightings. Valid dict keys are: | |
"loss_rpn_cls" - applied to classification loss | |
"loss_rpn_loc" - applied to box regression loss | |
box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou". | |
smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to | |
use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1" | |
""" | |
super().__init__() | |
self.in_features = in_features | |
self.rpn_head = head | |
self.anchor_generator = anchor_generator | |
self.anchor_matcher = anchor_matcher | |
self.box2box_transform = box2box_transform | |
self.batch_size_per_image = batch_size_per_image | |
self.positive_fraction = positive_fraction | |
# Map from self.training state to train/test settings | |
self.pre_nms_topk = {True: pre_nms_topk[0], False: pre_nms_topk[1]} | |
self.post_nms_topk = {True: post_nms_topk[0], False: post_nms_topk[1]} | |
self.nms_thresh = nms_thresh | |
self.min_box_size = float(min_box_size) | |
self.anchor_boundary_thresh = anchor_boundary_thresh | |
if isinstance(loss_weight, float): | |
loss_weight = {"loss_rpn_cls": loss_weight, "loss_rpn_loc": loss_weight} | |
self.loss_weight = loss_weight | |
self.box_reg_loss_type = box_reg_loss_type | |
self.smooth_l1_beta = smooth_l1_beta | |
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): | |
in_features = cfg.MODEL.RPN.IN_FEATURES | |
ret = { | |
"in_features": in_features, | |
"min_box_size": cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE, | |
"nms_thresh": cfg.MODEL.RPN.NMS_THRESH, | |
"batch_size_per_image": cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE, | |
"positive_fraction": cfg.MODEL.RPN.POSITIVE_FRACTION, | |
"loss_weight": { | |
"loss_rpn_cls": cfg.MODEL.RPN.LOSS_WEIGHT, | |
"loss_rpn_loc": cfg.MODEL.RPN.BBOX_REG_LOSS_WEIGHT * cfg.MODEL.RPN.LOSS_WEIGHT, | |
}, | |
"anchor_boundary_thresh": cfg.MODEL.RPN.BOUNDARY_THRESH, | |
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS), | |
"box_reg_loss_type": cfg.MODEL.RPN.BBOX_REG_LOSS_TYPE, | |
"smooth_l1_beta": cfg.MODEL.RPN.SMOOTH_L1_BETA, | |
} | |
ret["pre_nms_topk"] = (cfg.MODEL.RPN.PRE_NMS_TOPK_TRAIN, cfg.MODEL.RPN.PRE_NMS_TOPK_TEST) | |
ret["post_nms_topk"] = (cfg.MODEL.RPN.POST_NMS_TOPK_TRAIN, cfg.MODEL.RPN.POST_NMS_TOPK_TEST) | |
ret["anchor_generator"] = build_anchor_generator(cfg, [input_shape[f] for f in in_features]) | |
ret["anchor_matcher"] = Matcher( | |
cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS, allow_low_quality_matches=True | |
) | |
ret["head"] = build_rpn_head(cfg, [input_shape[f] for f in in_features]) | |
return ret | |
def _subsample_labels(self, label): | |
""" | |
Randomly sample a subset of positive and negative examples, and overwrite | |
the label vector to the ignore value (-1) for all elements that are not | |
included in the sample. | |
Args: | |
labels (Tensor): a vector of -1, 0, 1. Will be modified in-place and returned. | |
""" | |
pos_idx, neg_idx = subsample_labels( | |
label, self.batch_size_per_image, self.positive_fraction, 0 | |
) | |
# Fill with the ignore label (-1), then set positive and negative labels | |
label.fill_(-1) | |
label.scatter_(0, pos_idx, 1) | |
label.scatter_(0, neg_idx, 0) | |
return label | |
def label_and_sample_anchors( | |
self, anchors: List[Boxes], gt_instances: List[Instances] | |
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: | |
""" | |
Args: | |
anchors (list[Boxes]): anchors for each feature map. | |
gt_instances: the ground-truth instances for each image. | |
Returns: | |
list[Tensor]: | |
List of #img tensors. i-th element is a vector of labels whose length is | |
the total number of anchors across all feature maps R = sum(Hi * Wi * A). | |
Label values are in {-1, 0, 1}, with meanings: -1 = ignore; 0 = negative | |
class; 1 = positive class. | |
list[Tensor]: | |
i-th element is a Rx4 tensor. The values are the matched gt boxes for each | |
anchor. Values are undefined for those anchors not labeled as 1. | |
""" | |
anchors = Boxes.cat(anchors) | |
gt_boxes = [x.gt_boxes for x in gt_instances] | |
image_sizes = [x.image_size for x in gt_instances] | |
del gt_instances | |
gt_labels = [] | |
matched_gt_boxes = [] | |
for image_size_i, gt_boxes_i in zip(image_sizes, gt_boxes): | |
""" | |
image_size_i: (h, w) for the i-th image | |
gt_boxes_i: ground-truth boxes for i-th image | |
""" | |
match_quality_matrix = retry_if_cuda_oom(pairwise_iou)(gt_boxes_i, anchors) | |
matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix) | |
# Matching is memory-expensive and may result in CPU tensors. But the result is small | |
gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device) | |
del match_quality_matrix | |
if self.anchor_boundary_thresh >= 0: | |
# Discard anchors that go out of the boundaries of the image | |
# NOTE: This is legacy functionality that is turned off by default in Detectron2 | |
anchors_inside_image = anchors.inside_box(image_size_i, self.anchor_boundary_thresh) | |
gt_labels_i[~anchors_inside_image] = -1 | |
# A vector of labels (-1, 0, 1) for each anchor | |
gt_labels_i = self._subsample_labels(gt_labels_i) | |
if len(gt_boxes_i) == 0: | |
# These values won't be used anyway since the anchor is labeled as background | |
matched_gt_boxes_i = torch.zeros_like(anchors.tensor) | |
else: | |
# TODO wasted indexing computation for ignored boxes | |
matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor | |
gt_labels.append(gt_labels_i) # N,AHW | |
matched_gt_boxes.append(matched_gt_boxes_i) | |
return gt_labels, matched_gt_boxes | |
def losses( | |
self, | |
anchors: List[Boxes], | |
pred_objectness_logits: List[torch.Tensor], | |
gt_labels: List[torch.Tensor], | |
pred_anchor_deltas: List[torch.Tensor], | |
gt_boxes: List[torch.Tensor], | |
) -> Dict[str, torch.Tensor]: | |
""" | |
Return the losses from a set of RPN predictions and their associated ground-truth. | |
Args: | |
anchors (list[Boxes or RotatedBoxes]): anchors for each feature map, each | |
has shape (Hi*Wi*A, B), where B is box dimension (4 or 5). | |
pred_objectness_logits (list[Tensor]): A list of L elements. | |
Element i is a tensor of shape (N, Hi*Wi*A) representing | |
the predicted objectness logits for all anchors. | |
gt_labels (list[Tensor]): Output of :meth:`label_and_sample_anchors`. | |
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape | |
(N, Hi*Wi*A, 4 or 5) representing the predicted "deltas" used to transform anchors | |
to proposals. | |
gt_boxes (list[Tensor]): Output of :meth:`label_and_sample_anchors`. | |
Returns: | |
dict[loss name -> loss value]: A dict mapping from loss name to loss value. | |
Loss names are: `loss_rpn_cls` for objectness classification and | |
`loss_rpn_loc` for proposal localization. | |
""" | |
num_images = len(gt_labels) | |
gt_labels = torch.stack(gt_labels) # (N, sum(Hi*Wi*Ai)) | |
# Log the number of positive/negative anchors per-image that's used in training | |
pos_mask = gt_labels == 1 | |
num_pos_anchors = pos_mask.sum().item() | |
num_neg_anchors = (gt_labels == 0).sum().item() | |
storage = get_event_storage() | |
storage.put_scalar("rpn/num_pos_anchors", num_pos_anchors / num_images) | |
storage.put_scalar("rpn/num_neg_anchors", num_neg_anchors / num_images) | |
localization_loss = _dense_box_regression_loss( | |
anchors, | |
self.box2box_transform, | |
pred_anchor_deltas, | |
gt_boxes, | |
pos_mask, | |
box_reg_loss_type=self.box_reg_loss_type, | |
smooth_l1_beta=self.smooth_l1_beta, | |
) | |
valid_mask = gt_labels >= 0 | |
objectness_loss = F.binary_cross_entropy_with_logits( | |
cat(pred_objectness_logits, dim=1)[valid_mask], | |
gt_labels[valid_mask].to(torch.float32), | |
reduction="sum", | |
) | |
normalizer = self.batch_size_per_image * num_images | |
losses = { | |
"loss_rpn_cls": objectness_loss / normalizer, | |
# The original Faster R-CNN paper uses a slightly different normalizer | |
# for loc loss. But it doesn't matter in practice | |
"loss_rpn_loc": localization_loss / normalizer, | |
} | |
losses = {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()} | |
return losses | |
def forward( | |
self, | |
images: ImageList, | |
features: Dict[str, torch.Tensor], | |
gt_instances: Optional[List[Instances]] = None, | |
): | |
""" | |
Args: | |
images (ImageList): input images of length `N` | |
features (dict[str, Tensor]): input data as a mapping from feature | |
map name to tensor. Axis 0 represents the number of images `N` in | |
the input data; axes 1-3 are channels, height, and width, which may | |
vary between feature maps (e.g., if a feature pyramid is used). | |
gt_instances (list[Instances], optional): a length `N` list of `Instances`s. | |
Each `Instances` stores ground-truth instances for the corresponding image. | |
Returns: | |
proposals: list[Instances]: contains fields "proposal_boxes", "objectness_logits" | |
loss: dict[Tensor] or None | |
""" | |
features = [features[f] for f in self.in_features] | |
anchors = self.anchor_generator(features) | |
pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features) | |
# Transpose the Hi*Wi*A dimension to the middle: | |
pred_objectness_logits = [ | |
# (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A) | |
score.permute(0, 2, 3, 1).flatten(1) | |
for score in pred_objectness_logits | |
] | |
pred_anchor_deltas = [ | |
# (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A, B) | |
x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) | |
.permute(0, 3, 4, 1, 2) | |
.flatten(1, -2) | |
for x in pred_anchor_deltas | |
] | |
if self.training: | |
assert gt_instances is not None, "RPN requires gt_instances in training!" | |
gt_labels, gt_boxes = self.label_and_sample_anchors(anchors, gt_instances) | |
losses = self.losses( | |
anchors, pred_objectness_logits, gt_labels, pred_anchor_deltas, gt_boxes | |
) | |
else: | |
losses = {} | |
proposals = self.predict_proposals( | |
anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes | |
) | |
return proposals, losses | |
def predict_proposals( | |
self, | |
anchors: List[Boxes], | |
pred_objectness_logits: List[torch.Tensor], | |
pred_anchor_deltas: List[torch.Tensor], | |
image_sizes: List[Tuple[int, int]], | |
): | |
""" | |
Decode all the predicted box regression deltas to proposals. Find the top proposals | |
by applying NMS and removing boxes that are too small. | |
Returns: | |
proposals (list[Instances]): list of N Instances. The i-th Instances | |
stores post_nms_topk object proposals for image i, sorted by their | |
objectness score in descending order. | |
""" | |
# The proposals are treated as fixed for joint training with roi heads. | |
# This approach ignores the derivative w.r.t. the proposal boxes’ coordinates that | |
# are also network responses. | |
with torch.no_grad(): | |
pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas) | |
return find_top_rpn_proposals( | |
pred_proposals, | |
pred_objectness_logits, | |
image_sizes, | |
self.nms_thresh, | |
self.pre_nms_topk[self.training], | |
self.post_nms_topk[self.training], | |
self.min_box_size, | |
self.training, | |
) | |
def _decode_proposals(self, anchors: List[Boxes], pred_anchor_deltas: List[torch.Tensor]): | |
""" | |
Transform anchors into proposals by applying the predicted anchor deltas. | |
Returns: | |
proposals (list[Tensor]): A list of L tensors. Tensor i has shape | |
(N, Hi*Wi*A, B) | |
""" | |
N = pred_anchor_deltas[0].shape[0] | |
proposals = [] | |
# For each feature map | |
for anchors_i, pred_anchor_deltas_i in zip(anchors, pred_anchor_deltas): | |
B = anchors_i.tensor.size(1) | |
pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) | |
# Expand anchors to shape (N*Hi*Wi*A, B) | |
anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) | |
proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i) | |
# Append feature map proposals with shape (N, Hi*Wi*A, B) | |
proposals.append(proposals_i.view(N, -1, B)) | |
return proposals | |