Spaces:
Running
Running
from ..base_handler import ModelHandler | |
from transformers import AutoTokenizer | |
import torch | |
import time | |
import numpy as np | |
class SequenceClassificationHandler(ModelHandler): | |
def __init__(self, model_name, model_class, quantization_type, test_text): | |
super().__init__(model_name, model_class, quantization_type, test_text) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def run_inference(self, model, text): | |
inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(self.device) | |
start_time = time.time() | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
end_time = time.time() | |
return outputs, end_time - start_time | |
def decode_output(self, outputs): | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
predicted_class = torch.argmax(probabilities, dim=-1).item() | |
return f"Predicted class: {predicted_class}" | |
def compare_outputs(self, original_outputs, quantized_outputs): | |
"""Compare outputs for sequence classification models""" | |
if original_outputs is None or quantized_outputs is None: | |
return None | |
orig_logits = original_outputs.logits.cpu().numpy() | |
quant_logits = quantized_outputs.logits.cpu().numpy() | |
orig_probs = torch.nn.functional.softmax(torch.tensor(orig_logits), dim=-1).numpy() | |
quant_probs = torch.nn.functional.softmax(torch.tensor(quant_logits), dim=-1).numpy() | |
orig_pred = orig_probs.argmax(axis=-1) | |
quant_pred = quant_probs.argmax(axis=-1) | |
metrics = { | |
'class_match': float(orig_pred == quant_pred), | |
'logits_mse': ((orig_logits - quant_logits) ** 2).mean(), | |
'probability_mse': ((orig_probs - quant_probs) ** 2).mean(), | |
'max_probability_diff': abs(orig_probs.max() - quant_probs.max()), | |
'kl_divergence': float( | |
(orig_probs * (np.log(orig_probs + 1e-10) - np.log(quant_probs + 1e-10))).sum() | |
) | |
} | |
return metrics |