from ..base_handler import ModelHandler from transformers import AutoTokenizer import torch import time import numpy as np class SequenceClassificationHandler(ModelHandler): def __init__(self, model_name, model_class, quantization_type, test_text): super().__init__(model_name, model_class, quantization_type, test_text) self.tokenizer = AutoTokenizer.from_pretrained(model_name) def run_inference(self, model, text): inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(self.device) start_time = time.time() with torch.no_grad(): outputs = model(**inputs) end_time = time.time() return outputs, end_time - start_time def decode_output(self, outputs): probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) predicted_class = torch.argmax(probabilities, dim=-1).item() return f"Predicted class: {predicted_class}" def compare_outputs(self, original_outputs, quantized_outputs): """Compare outputs for sequence classification models""" if original_outputs is None or quantized_outputs is None: return None orig_logits = original_outputs.logits.cpu().numpy() quant_logits = quantized_outputs.logits.cpu().numpy() orig_probs = torch.nn.functional.softmax(torch.tensor(orig_logits), dim=-1).numpy() quant_probs = torch.nn.functional.softmax(torch.tensor(quant_logits), dim=-1).numpy() orig_pred = orig_probs.argmax(axis=-1) quant_pred = quant_probs.argmax(axis=-1) metrics = { 'class_match': float(orig_pred == quant_pred), 'logits_mse': ((orig_logits - quant_logits) ** 2).mean(), 'probability_mse': ((orig_probs - quant_probs) ** 2).mean(), 'max_probability_diff': abs(orig_probs.max() - quant_probs.max()), 'kl_divergence': float( (orig_probs * (np.log(orig_probs + 1e-10) - np.log(quant_probs + 1e-10))).sum() ) } return metrics