rag-chat / rag-chat.py
smkerr's picture
Upload rag-chat.py
6fa8438
raw
history blame
4.47 kB
import os
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import BSHTMLLoader
from bs4 import SoupStrainer
import re
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import chainlit as cl
# llm
model_id = "tiiuae/falcon-7b-instruct"
conv_model = HuggingFaceHub(
huggingfacehub_api_token=os.environ['HF_API_TOKEN'],
repo_id=model_id,
model_kwargs={"temperature":0.8,"max_length": 1000}
)
# chroma
data_path = "data/html"
embed_model = "all-MiniLM-L6-v2" # Chroma defaults to "sentence-transformers/all-MiniLM-L6-v2"
# load documents
def load_documents(directory):
# define Beautiful Soup key word args
bs_kwargs = {
"features": "html.parser",
"parse_only": SoupStrainer("p") # only include relevant text
}
# define Loader key word args
loader_kwargs = {
"open_encoding": "utf-8",
"bs_kwargs": bs_kwargs
}
# define Loader
loader = DirectoryLoader(
path=directory,
glob="*.html",
loader_cls=BSHTMLLoader,
loader_kwargs=loader_kwargs
)
documents = loader.load()
return documents
# prepare documents
def prepare_documents(documents):
for doc in documents:
doc.page_content = doc.page_content.replace("\n", " ").replace("\t", " ")
doc.page_content = re.sub("\\s+", " ", doc.page_content)
# define Beautiful Soup key word args
bs_kwargs = {
"features": "html.parser",
"parse_only": SoupStrainer("title") # only include relevant text
}
# define Loader key word args
loader_kwargs = {
"open_encoding": "utf-8",
"bs_kwargs": bs_kwargs
}
loader = DirectoryLoader(
path=data_path,
glob="*.html",
loader_cls=BSHTMLLoader,
loader_kwargs=loader_kwargs
)
document_sources = loader.load()
# convert source metadata into a list
source_list = [doc.metadata["title"] for doc in document_sources]
# update source metadata
i = 0
for doc in documents:
doc.metadata["source"] = " ".join(["FAR", source_list[i]])
i += 1
return documents
@cl.on_chat_start
async def on_chat_start():
# Instantiate the chain for that user session
embedding_func = SentenceTransformerEmbeddings(model_name=embed_model)
msg = cl.Message(
content="Loading and processing documents. This may take a while...",
disable_human_feedback=True)
await msg.send()
documents = load_documents(data_path)
documents = prepare_documents(documents)
docsearch = await cl.make_async(Chroma.from_documents)(
documents,
embedding_func
)
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
chain = ConversationalRetrievalChain.from_llm(
conv_model,
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
)
msg.content = "Ready. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
cb = cl.AsyncLangchainCallbackHandler()
res = await chain.acall(message.content, callbacks=[cb])
answer = res["answer"]
source_documents = res["source_documents"]
text_elements = []
source_names = set() # Use a set to store unique source names
for idx, source_doc in enumerate(source_documents):
source_name = source_doc.metadata["source"]
text_elements.append(
cl.Text(content=source_doc.page_content,
name=source_name))
source_names.add(source_name) # Add the source name to the set
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
await cl.Message(content=answer, elements=text_elements).send()