Upload rag-chat.py
Browse files- rag-chat.py +159 -0
rag-chat.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from langchain.document_loaders import DirectoryLoader
|
4 |
+
from langchain.document_loaders import BSHTMLLoader
|
5 |
+
from bs4 import SoupStrainer
|
6 |
+
import re
|
7 |
+
|
8 |
+
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
|
9 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
10 |
+
from langchain.vectorstores import Chroma
|
11 |
+
|
12 |
+
from langchain.chains import ConversationalRetrievalChain
|
13 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
14 |
+
|
15 |
+
import chainlit as cl
|
16 |
+
|
17 |
+
# llm
|
18 |
+
model_id = "tiiuae/falcon-7b-instruct"
|
19 |
+
conv_model = HuggingFaceHub(
|
20 |
+
huggingfacehub_api_token=os.environ['HF_API_TOKEN'],
|
21 |
+
repo_id=model_id,
|
22 |
+
model_kwargs={"temperature":0.8,"max_length": 1000}
|
23 |
+
)
|
24 |
+
|
25 |
+
# chroma
|
26 |
+
data_path = "data/html"
|
27 |
+
embed_model = "all-MiniLM-L6-v2" # Chroma defaults to "sentence-transformers/all-MiniLM-L6-v2"
|
28 |
+
|
29 |
+
# load documents
|
30 |
+
def load_documents(directory):
|
31 |
+
|
32 |
+
# define Beautiful Soup key word args
|
33 |
+
bs_kwargs = {
|
34 |
+
"features": "html.parser",
|
35 |
+
"parse_only": SoupStrainer("p") # only include relevant text
|
36 |
+
}
|
37 |
+
|
38 |
+
# define Loader key word args
|
39 |
+
loader_kwargs = {
|
40 |
+
"open_encoding": "utf-8",
|
41 |
+
"bs_kwargs": bs_kwargs
|
42 |
+
}
|
43 |
+
|
44 |
+
# define Loader
|
45 |
+
loader = DirectoryLoader(
|
46 |
+
path=directory,
|
47 |
+
glob="*.html",
|
48 |
+
loader_cls=BSHTMLLoader,
|
49 |
+
loader_kwargs=loader_kwargs
|
50 |
+
)
|
51 |
+
|
52 |
+
documents = loader.load()
|
53 |
+
return documents
|
54 |
+
|
55 |
+
|
56 |
+
# prepare documents
|
57 |
+
def prepare_documents(documents):
|
58 |
+
for doc in documents:
|
59 |
+
doc.page_content = doc.page_content.replace("\n", " ").replace("\t", " ")
|
60 |
+
doc.page_content = re.sub("\\s+", " ", doc.page_content)
|
61 |
+
|
62 |
+
# define Beautiful Soup key word args
|
63 |
+
bs_kwargs = {
|
64 |
+
"features": "html.parser",
|
65 |
+
"parse_only": SoupStrainer("title") # only include relevant text
|
66 |
+
}
|
67 |
+
|
68 |
+
# define Loader key word args
|
69 |
+
loader_kwargs = {
|
70 |
+
"open_encoding": "utf-8",
|
71 |
+
"bs_kwargs": bs_kwargs
|
72 |
+
}
|
73 |
+
|
74 |
+
loader = DirectoryLoader(
|
75 |
+
path=data_path,
|
76 |
+
glob="*.html",
|
77 |
+
loader_cls=BSHTMLLoader,
|
78 |
+
loader_kwargs=loader_kwargs
|
79 |
+
)
|
80 |
+
|
81 |
+
document_sources = loader.load()
|
82 |
+
|
83 |
+
# convert source metadata into a list
|
84 |
+
source_list = [doc.metadata["title"] for doc in document_sources]
|
85 |
+
|
86 |
+
# update source metadata
|
87 |
+
i = 0
|
88 |
+
for doc in documents:
|
89 |
+
doc.metadata["source"] = " ".join(["FAR", source_list[i]])
|
90 |
+
i += 1
|
91 |
+
return documents
|
92 |
+
|
93 |
+
@cl.on_chat_start
|
94 |
+
async def on_chat_start():
|
95 |
+
# Instantiate the chain for that user session
|
96 |
+
embedding_func = SentenceTransformerEmbeddings(model_name=embed_model)
|
97 |
+
|
98 |
+
msg = cl.Message(
|
99 |
+
content="Loading and processing documents. This may take a while...",
|
100 |
+
disable_human_feedback=True)
|
101 |
+
await msg.send()
|
102 |
+
|
103 |
+
documents = load_documents(data_path)
|
104 |
+
documents = prepare_documents(documents)
|
105 |
+
|
106 |
+
docsearch = await cl.make_async(Chroma.from_documents)(
|
107 |
+
documents,
|
108 |
+
embedding_func
|
109 |
+
)
|
110 |
+
|
111 |
+
message_history = ChatMessageHistory()
|
112 |
+
|
113 |
+
memory = ConversationBufferMemory(
|
114 |
+
memory_key="chat_history",
|
115 |
+
output_key="answer",
|
116 |
+
chat_memory=message_history,
|
117 |
+
return_messages=True,
|
118 |
+
)
|
119 |
+
|
120 |
+
chain = ConversationalRetrievalChain.from_llm(
|
121 |
+
conv_model,
|
122 |
+
chain_type="stuff",
|
123 |
+
retriever=docsearch.as_retriever(),
|
124 |
+
memory=memory,
|
125 |
+
return_source_documents=True,
|
126 |
+
)
|
127 |
+
msg.content = "Ready. You can now ask questions!"
|
128 |
+
|
129 |
+
await msg.update()
|
130 |
+
cl.user_session.set("chain", chain)
|
131 |
+
|
132 |
+
|
133 |
+
@cl.on_message
|
134 |
+
async def main(message):
|
135 |
+
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
|
136 |
+
cb = cl.AsyncLangchainCallbackHandler()
|
137 |
+
|
138 |
+
res = await chain.acall(message.content, callbacks=[cb])
|
139 |
+
|
140 |
+
answer = res["answer"]
|
141 |
+
source_documents = res["source_documents"]
|
142 |
+
|
143 |
+
text_elements = []
|
144 |
+
|
145 |
+
source_names = set() # Use a set to store unique source names
|
146 |
+
|
147 |
+
for idx, source_doc in enumerate(source_documents):
|
148 |
+
source_name = source_doc.metadata["source"]
|
149 |
+
text_elements.append(
|
150 |
+
cl.Text(content=source_doc.page_content,
|
151 |
+
name=source_name))
|
152 |
+
source_names.add(source_name) # Add the source name to the set
|
153 |
+
|
154 |
+
if source_names:
|
155 |
+
answer += f"\nSources: {', '.join(source_names)}"
|
156 |
+
else:
|
157 |
+
answer += "\nNo sources found"
|
158 |
+
|
159 |
+
await cl.Message(content=answer, elements=text_elements).send()
|