Spaces:
Sleeping
Sleeping
Upload commons.py
Browse files- lib/commons.py +172 -0
lib/commons.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
|
10 |
+
def init_weights(m, mean=0.0, std=0.01):
|
11 |
+
classname = m.__class__.__name__
|
12 |
+
if classname.find("Conv") != -1:
|
13 |
+
m.weight.data.normal_(mean, std)
|
14 |
+
|
15 |
+
|
16 |
+
def get_padding(kernel_size, dilation=1):
|
17 |
+
return int((kernel_size * dilation - dilation) / 2)
|
18 |
+
|
19 |
+
|
20 |
+
# def convert_pad_shape(pad_shape):
|
21 |
+
# l = pad_shape[::-1]
|
22 |
+
# pad_shape = [item for sublist in l for item in sublist]
|
23 |
+
# return pad_shape
|
24 |
+
|
25 |
+
|
26 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
27 |
+
"""KL(P||Q)"""
|
28 |
+
kl = (logs_q - logs_p) - 0.5
|
29 |
+
kl += (
|
30 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
31 |
+
)
|
32 |
+
return kl
|
33 |
+
|
34 |
+
|
35 |
+
def rand_gumbel(shape):
|
36 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
37 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
38 |
+
return -torch.log(-torch.log(uniform_samples))
|
39 |
+
|
40 |
+
|
41 |
+
def rand_gumbel_like(x):
|
42 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
43 |
+
return g
|
44 |
+
|
45 |
+
|
46 |
+
def slice_segments(x, ids_str, segment_size=4):
|
47 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
48 |
+
for i in range(x.size(0)):
|
49 |
+
idx_str = ids_str[i]
|
50 |
+
idx_end = idx_str + segment_size
|
51 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
52 |
+
return ret
|
53 |
+
|
54 |
+
|
55 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
56 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
57 |
+
for i in range(x.size(0)):
|
58 |
+
idx_str = ids_str[i]
|
59 |
+
idx_end = idx_str + segment_size
|
60 |
+
ret[i] = x[i, idx_str:idx_end]
|
61 |
+
return ret
|
62 |
+
|
63 |
+
|
64 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
65 |
+
b, d, t = x.size()
|
66 |
+
if x_lengths is None:
|
67 |
+
x_lengths = t
|
68 |
+
ids_str_max = x_lengths - segment_size + 1
|
69 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
70 |
+
ret = slice_segments(x, ids_str, segment_size)
|
71 |
+
return ret, ids_str
|
72 |
+
|
73 |
+
|
74 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
75 |
+
position = torch.arange(length, dtype=torch.float)
|
76 |
+
num_timescales = channels // 2
|
77 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
78 |
+
num_timescales - 1
|
79 |
+
)
|
80 |
+
inv_timescales = min_timescale * torch.exp(
|
81 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
82 |
+
)
|
83 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
84 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
85 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
86 |
+
signal = signal.view(1, channels, length)
|
87 |
+
return signal
|
88 |
+
|
89 |
+
|
90 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
91 |
+
b, channels, length = x.size()
|
92 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
93 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
94 |
+
|
95 |
+
|
96 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
97 |
+
b, channels, length = x.size()
|
98 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
99 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
100 |
+
|
101 |
+
|
102 |
+
def subsequent_mask(length):
|
103 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
104 |
+
return mask
|
105 |
+
|
106 |
+
|
107 |
+
@torch.jit.script
|
108 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
109 |
+
n_channels_int = n_channels[0]
|
110 |
+
in_act = input_a + input_b
|
111 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
112 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
113 |
+
acts = t_act * s_act
|
114 |
+
return acts
|
115 |
+
|
116 |
+
|
117 |
+
# def convert_pad_shape(pad_shape):
|
118 |
+
# l = pad_shape[::-1]
|
119 |
+
# pad_shape = [item for sublist in l for item in sublist]
|
120 |
+
# return pad_shape
|
121 |
+
|
122 |
+
|
123 |
+
def convert_pad_shape(pad_shape: List[List[int]]) -> List[int]:
|
124 |
+
return torch.tensor(pad_shape).flip(0).reshape(-1).int().tolist()
|
125 |
+
|
126 |
+
|
127 |
+
def shift_1d(x):
|
128 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
129 |
+
return x
|
130 |
+
|
131 |
+
|
132 |
+
def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None):
|
133 |
+
if max_length is None:
|
134 |
+
max_length = length.max()
|
135 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
136 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
137 |
+
|
138 |
+
|
139 |
+
def generate_path(duration, mask):
|
140 |
+
"""
|
141 |
+
duration: [b, 1, t_x]
|
142 |
+
mask: [b, 1, t_y, t_x]
|
143 |
+
"""
|
144 |
+
device = duration.device
|
145 |
+
|
146 |
+
b, _, t_y, t_x = mask.shape
|
147 |
+
cum_duration = torch.cumsum(duration, -1)
|
148 |
+
|
149 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
150 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
151 |
+
path = path.view(b, t_x, t_y)
|
152 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
153 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
154 |
+
return path
|
155 |
+
|
156 |
+
|
157 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
158 |
+
if isinstance(parameters, torch.Tensor):
|
159 |
+
parameters = [parameters]
|
160 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
161 |
+
norm_type = float(norm_type)
|
162 |
+
if clip_value is not None:
|
163 |
+
clip_value = float(clip_value)
|
164 |
+
|
165 |
+
total_norm = 0
|
166 |
+
for p in parameters:
|
167 |
+
param_norm = p.grad.data.norm(norm_type)
|
168 |
+
total_norm += param_norm.item() ** norm_type
|
169 |
+
if clip_value is not None:
|
170 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
171 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
172 |
+
return total_norm
|