Spaces:
Running
Running
Upload 5 files
Browse files- lib/data_utils.py +517 -0
- lib/losses.py +58 -0
- lib/mel_processing.py +132 -0
- lib/process_ckpt.py +261 -0
- lib/utils.py +478 -0
lib/data_utils.py
ADDED
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import traceback
|
3 |
+
import logging
|
4 |
+
|
5 |
+
logger = logging.getLogger(__name__)
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.utils.data
|
10 |
+
|
11 |
+
from infer.lib.train.mel_processing import spectrogram_torch
|
12 |
+
from infer.lib.train.utils import load_filepaths_and_text, load_wav_to_torch
|
13 |
+
|
14 |
+
|
15 |
+
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
16 |
+
"""
|
17 |
+
1) loads audio, text pairs
|
18 |
+
2) normalizes text and converts them to sequences of integers
|
19 |
+
3) computes spectrograms from audio files.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, audiopaths_and_text, hparams):
|
23 |
+
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
24 |
+
self.max_wav_value = hparams.max_wav_value
|
25 |
+
self.sampling_rate = hparams.sampling_rate
|
26 |
+
self.filter_length = hparams.filter_length
|
27 |
+
self.hop_length = hparams.hop_length
|
28 |
+
self.win_length = hparams.win_length
|
29 |
+
self.sampling_rate = hparams.sampling_rate
|
30 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
31 |
+
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
32 |
+
self._filter()
|
33 |
+
|
34 |
+
def _filter(self):
|
35 |
+
"""
|
36 |
+
Filter text & store spec lengths
|
37 |
+
"""
|
38 |
+
# Store spectrogram lengths for Bucketing
|
39 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
40 |
+
# spec_length = wav_length // hop_length
|
41 |
+
audiopaths_and_text_new = []
|
42 |
+
lengths = []
|
43 |
+
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
44 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
45 |
+
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
46 |
+
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
|
47 |
+
self.audiopaths_and_text = audiopaths_and_text_new
|
48 |
+
self.lengths = lengths
|
49 |
+
|
50 |
+
def get_sid(self, sid):
|
51 |
+
sid = torch.LongTensor([int(sid)])
|
52 |
+
return sid
|
53 |
+
|
54 |
+
def get_audio_text_pair(self, audiopath_and_text):
|
55 |
+
# separate filename and text
|
56 |
+
file = audiopath_and_text[0]
|
57 |
+
phone = audiopath_and_text[1]
|
58 |
+
pitch = audiopath_and_text[2]
|
59 |
+
pitchf = audiopath_and_text[3]
|
60 |
+
dv = audiopath_and_text[4]
|
61 |
+
|
62 |
+
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf)
|
63 |
+
spec, wav = self.get_audio(file)
|
64 |
+
dv = self.get_sid(dv)
|
65 |
+
|
66 |
+
len_phone = phone.size()[0]
|
67 |
+
len_spec = spec.size()[-1]
|
68 |
+
# print(123,phone.shape,pitch.shape,spec.shape)
|
69 |
+
if len_phone != len_spec:
|
70 |
+
len_min = min(len_phone, len_spec)
|
71 |
+
# amor
|
72 |
+
len_wav = len_min * self.hop_length
|
73 |
+
|
74 |
+
spec = spec[:, :len_min]
|
75 |
+
wav = wav[:, :len_wav]
|
76 |
+
|
77 |
+
phone = phone[:len_min, :]
|
78 |
+
pitch = pitch[:len_min]
|
79 |
+
pitchf = pitchf[:len_min]
|
80 |
+
|
81 |
+
return (spec, wav, phone, pitch, pitchf, dv)
|
82 |
+
|
83 |
+
def get_labels(self, phone, pitch, pitchf):
|
84 |
+
phone = np.load(phone)
|
85 |
+
phone = np.repeat(phone, 2, axis=0)
|
86 |
+
pitch = np.load(pitch)
|
87 |
+
pitchf = np.load(pitchf)
|
88 |
+
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
89 |
+
# print(234,phone.shape,pitch.shape)
|
90 |
+
phone = phone[:n_num, :]
|
91 |
+
pitch = pitch[:n_num]
|
92 |
+
pitchf = pitchf[:n_num]
|
93 |
+
phone = torch.FloatTensor(phone)
|
94 |
+
pitch = torch.LongTensor(pitch)
|
95 |
+
pitchf = torch.FloatTensor(pitchf)
|
96 |
+
return phone, pitch, pitchf
|
97 |
+
|
98 |
+
def get_audio(self, filename):
|
99 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
100 |
+
if sampling_rate != self.sampling_rate:
|
101 |
+
raise ValueError(
|
102 |
+
"{} SR doesn't match target {} SR".format(
|
103 |
+
sampling_rate, self.sampling_rate
|
104 |
+
)
|
105 |
+
)
|
106 |
+
audio_norm = audio
|
107 |
+
# audio_norm = audio / self.max_wav_value
|
108 |
+
# audio_norm = audio / np.abs(audio).max()
|
109 |
+
|
110 |
+
audio_norm = audio_norm.unsqueeze(0)
|
111 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
112 |
+
if os.path.exists(spec_filename):
|
113 |
+
try:
|
114 |
+
spec = torch.load(spec_filename)
|
115 |
+
except:
|
116 |
+
logger.warning("%s %s", spec_filename, traceback.format_exc())
|
117 |
+
spec = spectrogram_torch(
|
118 |
+
audio_norm,
|
119 |
+
self.filter_length,
|
120 |
+
self.sampling_rate,
|
121 |
+
self.hop_length,
|
122 |
+
self.win_length,
|
123 |
+
center=False,
|
124 |
+
)
|
125 |
+
spec = torch.squeeze(spec, 0)
|
126 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
127 |
+
else:
|
128 |
+
spec = spectrogram_torch(
|
129 |
+
audio_norm,
|
130 |
+
self.filter_length,
|
131 |
+
self.sampling_rate,
|
132 |
+
self.hop_length,
|
133 |
+
self.win_length,
|
134 |
+
center=False,
|
135 |
+
)
|
136 |
+
spec = torch.squeeze(spec, 0)
|
137 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
138 |
+
return spec, audio_norm
|
139 |
+
|
140 |
+
def __getitem__(self, index):
|
141 |
+
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
142 |
+
|
143 |
+
def __len__(self):
|
144 |
+
return len(self.audiopaths_and_text)
|
145 |
+
|
146 |
+
|
147 |
+
class TextAudioCollateMultiNSFsid:
|
148 |
+
"""Zero-pads model inputs and targets"""
|
149 |
+
|
150 |
+
def __init__(self, return_ids=False):
|
151 |
+
self.return_ids = return_ids
|
152 |
+
|
153 |
+
def __call__(self, batch):
|
154 |
+
"""Collate's training batch from normalized text and aduio
|
155 |
+
PARAMS
|
156 |
+
------
|
157 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
158 |
+
"""
|
159 |
+
# Right zero-pad all one-hot text sequences to max input length
|
160 |
+
_, ids_sorted_decreasing = torch.sort(
|
161 |
+
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
162 |
+
)
|
163 |
+
|
164 |
+
max_spec_len = max([x[0].size(1) for x in batch])
|
165 |
+
max_wave_len = max([x[1].size(1) for x in batch])
|
166 |
+
spec_lengths = torch.LongTensor(len(batch))
|
167 |
+
wave_lengths = torch.LongTensor(len(batch))
|
168 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
169 |
+
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
170 |
+
spec_padded.zero_()
|
171 |
+
wave_padded.zero_()
|
172 |
+
|
173 |
+
max_phone_len = max([x[2].size(0) for x in batch])
|
174 |
+
phone_lengths = torch.LongTensor(len(batch))
|
175 |
+
phone_padded = torch.FloatTensor(
|
176 |
+
len(batch), max_phone_len, batch[0][2].shape[1]
|
177 |
+
) # (spec, wav, phone, pitch)
|
178 |
+
pitch_padded = torch.LongTensor(len(batch), max_phone_len)
|
179 |
+
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len)
|
180 |
+
phone_padded.zero_()
|
181 |
+
pitch_padded.zero_()
|
182 |
+
pitchf_padded.zero_()
|
183 |
+
# dv = torch.FloatTensor(len(batch), 256)#gin=256
|
184 |
+
sid = torch.LongTensor(len(batch))
|
185 |
+
|
186 |
+
for i in range(len(ids_sorted_decreasing)):
|
187 |
+
row = batch[ids_sorted_decreasing[i]]
|
188 |
+
|
189 |
+
spec = row[0]
|
190 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
191 |
+
spec_lengths[i] = spec.size(1)
|
192 |
+
|
193 |
+
wave = row[1]
|
194 |
+
wave_padded[i, :, : wave.size(1)] = wave
|
195 |
+
wave_lengths[i] = wave.size(1)
|
196 |
+
|
197 |
+
phone = row[2]
|
198 |
+
phone_padded[i, : phone.size(0), :] = phone
|
199 |
+
phone_lengths[i] = phone.size(0)
|
200 |
+
|
201 |
+
pitch = row[3]
|
202 |
+
pitch_padded[i, : pitch.size(0)] = pitch
|
203 |
+
pitchf = row[4]
|
204 |
+
pitchf_padded[i, : pitchf.size(0)] = pitchf
|
205 |
+
|
206 |
+
# dv[i] = row[5]
|
207 |
+
sid[i] = row[5]
|
208 |
+
|
209 |
+
return (
|
210 |
+
phone_padded,
|
211 |
+
phone_lengths,
|
212 |
+
pitch_padded,
|
213 |
+
pitchf_padded,
|
214 |
+
spec_padded,
|
215 |
+
spec_lengths,
|
216 |
+
wave_padded,
|
217 |
+
wave_lengths,
|
218 |
+
# dv
|
219 |
+
sid,
|
220 |
+
)
|
221 |
+
|
222 |
+
|
223 |
+
class TextAudioLoader(torch.utils.data.Dataset):
|
224 |
+
"""
|
225 |
+
1) loads audio, text pairs
|
226 |
+
2) normalizes text and converts them to sequences of integers
|
227 |
+
3) computes spectrograms from audio files.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, audiopaths_and_text, hparams):
|
231 |
+
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
232 |
+
self.max_wav_value = hparams.max_wav_value
|
233 |
+
self.sampling_rate = hparams.sampling_rate
|
234 |
+
self.filter_length = hparams.filter_length
|
235 |
+
self.hop_length = hparams.hop_length
|
236 |
+
self.win_length = hparams.win_length
|
237 |
+
self.sampling_rate = hparams.sampling_rate
|
238 |
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
239 |
+
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
240 |
+
self._filter()
|
241 |
+
|
242 |
+
def _filter(self):
|
243 |
+
"""
|
244 |
+
Filter text & store spec lengths
|
245 |
+
"""
|
246 |
+
# Store spectrogram lengths for Bucketing
|
247 |
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
248 |
+
# spec_length = wav_length // hop_length
|
249 |
+
audiopaths_and_text_new = []
|
250 |
+
lengths = []
|
251 |
+
for audiopath, text, dv in self.audiopaths_and_text:
|
252 |
+
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
253 |
+
audiopaths_and_text_new.append([audiopath, text, dv])
|
254 |
+
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
|
255 |
+
self.audiopaths_and_text = audiopaths_and_text_new
|
256 |
+
self.lengths = lengths
|
257 |
+
|
258 |
+
def get_sid(self, sid):
|
259 |
+
sid = torch.LongTensor([int(sid)])
|
260 |
+
return sid
|
261 |
+
|
262 |
+
def get_audio_text_pair(self, audiopath_and_text):
|
263 |
+
# separate filename and text
|
264 |
+
file = audiopath_and_text[0]
|
265 |
+
phone = audiopath_and_text[1]
|
266 |
+
dv = audiopath_and_text[2]
|
267 |
+
|
268 |
+
phone = self.get_labels(phone)
|
269 |
+
spec, wav = self.get_audio(file)
|
270 |
+
dv = self.get_sid(dv)
|
271 |
+
|
272 |
+
len_phone = phone.size()[0]
|
273 |
+
len_spec = spec.size()[-1]
|
274 |
+
if len_phone != len_spec:
|
275 |
+
len_min = min(len_phone, len_spec)
|
276 |
+
len_wav = len_min * self.hop_length
|
277 |
+
spec = spec[:, :len_min]
|
278 |
+
wav = wav[:, :len_wav]
|
279 |
+
phone = phone[:len_min, :]
|
280 |
+
return (spec, wav, phone, dv)
|
281 |
+
|
282 |
+
def get_labels(self, phone):
|
283 |
+
phone = np.load(phone)
|
284 |
+
phone = np.repeat(phone, 2, axis=0)
|
285 |
+
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
286 |
+
phone = phone[:n_num, :]
|
287 |
+
phone = torch.FloatTensor(phone)
|
288 |
+
return phone
|
289 |
+
|
290 |
+
def get_audio(self, filename):
|
291 |
+
audio, sampling_rate = load_wav_to_torch(filename)
|
292 |
+
if sampling_rate != self.sampling_rate:
|
293 |
+
raise ValueError(
|
294 |
+
"{} SR doesn't match target {} SR".format(
|
295 |
+
sampling_rate, self.sampling_rate
|
296 |
+
)
|
297 |
+
)
|
298 |
+
audio_norm = audio
|
299 |
+
# audio_norm = audio / self.max_wav_value
|
300 |
+
# audio_norm = audio / np.abs(audio).max()
|
301 |
+
|
302 |
+
audio_norm = audio_norm.unsqueeze(0)
|
303 |
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
304 |
+
if os.path.exists(spec_filename):
|
305 |
+
try:
|
306 |
+
spec = torch.load(spec_filename)
|
307 |
+
except:
|
308 |
+
logger.warning("%s %s", spec_filename, traceback.format_exc())
|
309 |
+
spec = spectrogram_torch(
|
310 |
+
audio_norm,
|
311 |
+
self.filter_length,
|
312 |
+
self.sampling_rate,
|
313 |
+
self.hop_length,
|
314 |
+
self.win_length,
|
315 |
+
center=False,
|
316 |
+
)
|
317 |
+
spec = torch.squeeze(spec, 0)
|
318 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
319 |
+
else:
|
320 |
+
spec = spectrogram_torch(
|
321 |
+
audio_norm,
|
322 |
+
self.filter_length,
|
323 |
+
self.sampling_rate,
|
324 |
+
self.hop_length,
|
325 |
+
self.win_length,
|
326 |
+
center=False,
|
327 |
+
)
|
328 |
+
spec = torch.squeeze(spec, 0)
|
329 |
+
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
330 |
+
return spec, audio_norm
|
331 |
+
|
332 |
+
def __getitem__(self, index):
|
333 |
+
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
334 |
+
|
335 |
+
def __len__(self):
|
336 |
+
return len(self.audiopaths_and_text)
|
337 |
+
|
338 |
+
|
339 |
+
class TextAudioCollate:
|
340 |
+
"""Zero-pads model inputs and targets"""
|
341 |
+
|
342 |
+
def __init__(self, return_ids=False):
|
343 |
+
self.return_ids = return_ids
|
344 |
+
|
345 |
+
def __call__(self, batch):
|
346 |
+
"""Collate's training batch from normalized text and aduio
|
347 |
+
PARAMS
|
348 |
+
------
|
349 |
+
batch: [text_normalized, spec_normalized, wav_normalized]
|
350 |
+
"""
|
351 |
+
# Right zero-pad all one-hot text sequences to max input length
|
352 |
+
_, ids_sorted_decreasing = torch.sort(
|
353 |
+
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
354 |
+
)
|
355 |
+
|
356 |
+
max_spec_len = max([x[0].size(1) for x in batch])
|
357 |
+
max_wave_len = max([x[1].size(1) for x in batch])
|
358 |
+
spec_lengths = torch.LongTensor(len(batch))
|
359 |
+
wave_lengths = torch.LongTensor(len(batch))
|
360 |
+
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
361 |
+
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
362 |
+
spec_padded.zero_()
|
363 |
+
wave_padded.zero_()
|
364 |
+
|
365 |
+
max_phone_len = max([x[2].size(0) for x in batch])
|
366 |
+
phone_lengths = torch.LongTensor(len(batch))
|
367 |
+
phone_padded = torch.FloatTensor(
|
368 |
+
len(batch), max_phone_len, batch[0][2].shape[1]
|
369 |
+
)
|
370 |
+
phone_padded.zero_()
|
371 |
+
sid = torch.LongTensor(len(batch))
|
372 |
+
|
373 |
+
for i in range(len(ids_sorted_decreasing)):
|
374 |
+
row = batch[ids_sorted_decreasing[i]]
|
375 |
+
|
376 |
+
spec = row[0]
|
377 |
+
spec_padded[i, :, : spec.size(1)] = spec
|
378 |
+
spec_lengths[i] = spec.size(1)
|
379 |
+
|
380 |
+
wave = row[1]
|
381 |
+
wave_padded[i, :, : wave.size(1)] = wave
|
382 |
+
wave_lengths[i] = wave.size(1)
|
383 |
+
|
384 |
+
phone = row[2]
|
385 |
+
phone_padded[i, : phone.size(0), :] = phone
|
386 |
+
phone_lengths[i] = phone.size(0)
|
387 |
+
|
388 |
+
sid[i] = row[3]
|
389 |
+
|
390 |
+
return (
|
391 |
+
phone_padded,
|
392 |
+
phone_lengths,
|
393 |
+
spec_padded,
|
394 |
+
spec_lengths,
|
395 |
+
wave_padded,
|
396 |
+
wave_lengths,
|
397 |
+
sid,
|
398 |
+
)
|
399 |
+
|
400 |
+
|
401 |
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
402 |
+
"""
|
403 |
+
Maintain similar input lengths in a batch.
|
404 |
+
Length groups are specified by boundaries.
|
405 |
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
406 |
+
|
407 |
+
It removes samples which are not included in the boundaries.
|
408 |
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
409 |
+
"""
|
410 |
+
|
411 |
+
def __init__(
|
412 |
+
self,
|
413 |
+
dataset,
|
414 |
+
batch_size,
|
415 |
+
boundaries,
|
416 |
+
num_replicas=None,
|
417 |
+
rank=None,
|
418 |
+
shuffle=True,
|
419 |
+
):
|
420 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
421 |
+
self.lengths = dataset.lengths
|
422 |
+
self.batch_size = batch_size
|
423 |
+
self.boundaries = boundaries
|
424 |
+
|
425 |
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
426 |
+
self.total_size = sum(self.num_samples_per_bucket)
|
427 |
+
self.num_samples = self.total_size // self.num_replicas
|
428 |
+
|
429 |
+
def _create_buckets(self):
|
430 |
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
431 |
+
for i in range(len(self.lengths)):
|
432 |
+
length = self.lengths[i]
|
433 |
+
idx_bucket = self._bisect(length)
|
434 |
+
if idx_bucket != -1:
|
435 |
+
buckets[idx_bucket].append(i)
|
436 |
+
|
437 |
+
for i in range(len(buckets) - 1, -1, -1): #
|
438 |
+
if len(buckets[i]) == 0:
|
439 |
+
buckets.pop(i)
|
440 |
+
self.boundaries.pop(i + 1)
|
441 |
+
|
442 |
+
num_samples_per_bucket = []
|
443 |
+
for i in range(len(buckets)):
|
444 |
+
len_bucket = len(buckets[i])
|
445 |
+
total_batch_size = self.num_replicas * self.batch_size
|
446 |
+
rem = (
|
447 |
+
total_batch_size - (len_bucket % total_batch_size)
|
448 |
+
) % total_batch_size
|
449 |
+
num_samples_per_bucket.append(len_bucket + rem)
|
450 |
+
return buckets, num_samples_per_bucket
|
451 |
+
|
452 |
+
def __iter__(self):
|
453 |
+
# deterministically shuffle based on epoch
|
454 |
+
g = torch.Generator()
|
455 |
+
g.manual_seed(self.epoch)
|
456 |
+
|
457 |
+
indices = []
|
458 |
+
if self.shuffle:
|
459 |
+
for bucket in self.buckets:
|
460 |
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
461 |
+
else:
|
462 |
+
for bucket in self.buckets:
|
463 |
+
indices.append(list(range(len(bucket))))
|
464 |
+
|
465 |
+
batches = []
|
466 |
+
for i in range(len(self.buckets)):
|
467 |
+
bucket = self.buckets[i]
|
468 |
+
len_bucket = len(bucket)
|
469 |
+
ids_bucket = indices[i]
|
470 |
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
471 |
+
|
472 |
+
# add extra samples to make it evenly divisible
|
473 |
+
rem = num_samples_bucket - len_bucket
|
474 |
+
ids_bucket = (
|
475 |
+
ids_bucket
|
476 |
+
+ ids_bucket * (rem // len_bucket)
|
477 |
+
+ ids_bucket[: (rem % len_bucket)]
|
478 |
+
)
|
479 |
+
|
480 |
+
# subsample
|
481 |
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
482 |
+
|
483 |
+
# batching
|
484 |
+
for j in range(len(ids_bucket) // self.batch_size):
|
485 |
+
batch = [
|
486 |
+
bucket[idx]
|
487 |
+
for idx in ids_bucket[
|
488 |
+
j * self.batch_size : (j + 1) * self.batch_size
|
489 |
+
]
|
490 |
+
]
|
491 |
+
batches.append(batch)
|
492 |
+
|
493 |
+
if self.shuffle:
|
494 |
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
495 |
+
batches = [batches[i] for i in batch_ids]
|
496 |
+
self.batches = batches
|
497 |
+
|
498 |
+
assert len(self.batches) * self.batch_size == self.num_samples
|
499 |
+
return iter(self.batches)
|
500 |
+
|
501 |
+
def _bisect(self, x, lo=0, hi=None):
|
502 |
+
if hi is None:
|
503 |
+
hi = len(self.boundaries) - 1
|
504 |
+
|
505 |
+
if hi > lo:
|
506 |
+
mid = (hi + lo) // 2
|
507 |
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
508 |
+
return mid
|
509 |
+
elif x <= self.boundaries[mid]:
|
510 |
+
return self._bisect(x, lo, mid)
|
511 |
+
else:
|
512 |
+
return self._bisect(x, mid + 1, hi)
|
513 |
+
else:
|
514 |
+
return -1
|
515 |
+
|
516 |
+
def __len__(self):
|
517 |
+
return self.num_samples // self.batch_size
|
lib/losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def feature_loss(fmap_r, fmap_g):
|
5 |
+
loss = 0
|
6 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
+
for rl, gl in zip(dr, dg):
|
8 |
+
rl = rl.float().detach()
|
9 |
+
gl = gl.float()
|
10 |
+
loss += torch.mean(torch.abs(rl - gl))
|
11 |
+
|
12 |
+
return loss * 2
|
13 |
+
|
14 |
+
|
15 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
+
loss = 0
|
17 |
+
r_losses = []
|
18 |
+
g_losses = []
|
19 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
+
dr = dr.float()
|
21 |
+
dg = dg.float()
|
22 |
+
r_loss = torch.mean((1 - dr) ** 2)
|
23 |
+
g_loss = torch.mean(dg**2)
|
24 |
+
loss += r_loss + g_loss
|
25 |
+
r_losses.append(r_loss.item())
|
26 |
+
g_losses.append(g_loss.item())
|
27 |
+
|
28 |
+
return loss, r_losses, g_losses
|
29 |
+
|
30 |
+
|
31 |
+
def generator_loss(disc_outputs):
|
32 |
+
loss = 0
|
33 |
+
gen_losses = []
|
34 |
+
for dg in disc_outputs:
|
35 |
+
dg = dg.float()
|
36 |
+
l = torch.mean((1 - dg) ** 2)
|
37 |
+
gen_losses.append(l)
|
38 |
+
loss += l
|
39 |
+
|
40 |
+
return loss, gen_losses
|
41 |
+
|
42 |
+
|
43 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
+
"""
|
45 |
+
z_p, logs_q: [b, h, t_t]
|
46 |
+
m_p, logs_p: [b, h, t_t]
|
47 |
+
"""
|
48 |
+
z_p = z_p.float()
|
49 |
+
logs_q = logs_q.float()
|
50 |
+
m_p = m_p.float()
|
51 |
+
logs_p = logs_p.float()
|
52 |
+
z_mask = z_mask.float()
|
53 |
+
|
54 |
+
kl = logs_p - logs_q - 0.5
|
55 |
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
56 |
+
kl = torch.sum(kl * z_mask)
|
57 |
+
l = kl / torch.sum(z_mask)
|
58 |
+
return l
|
lib/mel_processing.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.utils.data
|
3 |
+
from librosa.filters import mel as librosa_mel_fn
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
MAX_WAV_VALUE = 32768.0
|
9 |
+
|
10 |
+
|
11 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
12 |
+
"""
|
13 |
+
PARAMS
|
14 |
+
------
|
15 |
+
C: compression factor
|
16 |
+
"""
|
17 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
18 |
+
|
19 |
+
|
20 |
+
def dynamic_range_decompression_torch(x, C=1):
|
21 |
+
"""
|
22 |
+
PARAMS
|
23 |
+
------
|
24 |
+
C: compression factor used to compress
|
25 |
+
"""
|
26 |
+
return torch.exp(x) / C
|
27 |
+
|
28 |
+
|
29 |
+
def spectral_normalize_torch(magnitudes):
|
30 |
+
return dynamic_range_compression_torch(magnitudes)
|
31 |
+
|
32 |
+
|
33 |
+
def spectral_de_normalize_torch(magnitudes):
|
34 |
+
return dynamic_range_decompression_torch(magnitudes)
|
35 |
+
|
36 |
+
|
37 |
+
# Reusable banks
|
38 |
+
mel_basis = {}
|
39 |
+
hann_window = {}
|
40 |
+
|
41 |
+
|
42 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
43 |
+
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
y :: (B, T) - Audio waveforms
|
47 |
+
n_fft
|
48 |
+
sampling_rate
|
49 |
+
hop_size
|
50 |
+
win_size
|
51 |
+
center
|
52 |
+
Returns:
|
53 |
+
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
54 |
+
"""
|
55 |
+
# Validation
|
56 |
+
if torch.min(y) < -1.07:
|
57 |
+
logger.debug("min value is %s", str(torch.min(y)))
|
58 |
+
if torch.max(y) > 1.07:
|
59 |
+
logger.debug("max value is %s", str(torch.max(y)))
|
60 |
+
|
61 |
+
# Window - Cache if needed
|
62 |
+
global hann_window
|
63 |
+
dtype_device = str(y.dtype) + "_" + str(y.device)
|
64 |
+
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
65 |
+
if wnsize_dtype_device not in hann_window:
|
66 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
67 |
+
dtype=y.dtype, device=y.device
|
68 |
+
)
|
69 |
+
|
70 |
+
# Padding
|
71 |
+
y = torch.nn.functional.pad(
|
72 |
+
y.unsqueeze(1),
|
73 |
+
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
74 |
+
mode="reflect",
|
75 |
+
)
|
76 |
+
y = y.squeeze(1)
|
77 |
+
|
78 |
+
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
|
79 |
+
spec = torch.stft(
|
80 |
+
y,
|
81 |
+
n_fft,
|
82 |
+
hop_length=hop_size,
|
83 |
+
win_length=win_size,
|
84 |
+
window=hann_window[wnsize_dtype_device],
|
85 |
+
center=center,
|
86 |
+
pad_mode="reflect",
|
87 |
+
normalized=False,
|
88 |
+
onesided=True,
|
89 |
+
return_complex=False,
|
90 |
+
)
|
91 |
+
|
92 |
+
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
|
93 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
94 |
+
return spec
|
95 |
+
|
96 |
+
|
97 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
98 |
+
# MelBasis - Cache if needed
|
99 |
+
global mel_basis
|
100 |
+
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
101 |
+
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
102 |
+
if fmax_dtype_device not in mel_basis:
|
103 |
+
mel = librosa_mel_fn(
|
104 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
105 |
+
)
|
106 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
107 |
+
dtype=spec.dtype, device=spec.device
|
108 |
+
)
|
109 |
+
|
110 |
+
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
|
111 |
+
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
112 |
+
melspec = spectral_normalize_torch(melspec)
|
113 |
+
return melspec
|
114 |
+
|
115 |
+
|
116 |
+
def mel_spectrogram_torch(
|
117 |
+
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
118 |
+
):
|
119 |
+
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
y :: (B, T) - Waveforms
|
123 |
+
Returns:
|
124 |
+
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
|
125 |
+
"""
|
126 |
+
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
|
127 |
+
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
|
128 |
+
|
129 |
+
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
130 |
+
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
131 |
+
|
132 |
+
return melspec
|
lib/process_ckpt.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
from collections import OrderedDict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from i18n.i18n import I18nAuto
|
9 |
+
|
10 |
+
i18n = I18nAuto()
|
11 |
+
|
12 |
+
|
13 |
+
def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
14 |
+
try:
|
15 |
+
opt = OrderedDict()
|
16 |
+
opt["weight"] = {}
|
17 |
+
for key in ckpt.keys():
|
18 |
+
if "enc_q" in key:
|
19 |
+
continue
|
20 |
+
opt["weight"][key] = ckpt[key].half()
|
21 |
+
opt["config"] = [
|
22 |
+
hps.data.filter_length // 2 + 1,
|
23 |
+
32,
|
24 |
+
hps.model.inter_channels,
|
25 |
+
hps.model.hidden_channels,
|
26 |
+
hps.model.filter_channels,
|
27 |
+
hps.model.n_heads,
|
28 |
+
hps.model.n_layers,
|
29 |
+
hps.model.kernel_size,
|
30 |
+
hps.model.p_dropout,
|
31 |
+
hps.model.resblock,
|
32 |
+
hps.model.resblock_kernel_sizes,
|
33 |
+
hps.model.resblock_dilation_sizes,
|
34 |
+
hps.model.upsample_rates,
|
35 |
+
hps.model.upsample_initial_channel,
|
36 |
+
hps.model.upsample_kernel_sizes,
|
37 |
+
hps.model.spk_embed_dim,
|
38 |
+
hps.model.gin_channels,
|
39 |
+
hps.data.sampling_rate,
|
40 |
+
]
|
41 |
+
opt["info"] = "%sepoch" % epoch
|
42 |
+
opt["sr"] = sr
|
43 |
+
opt["f0"] = if_f0
|
44 |
+
opt["version"] = version
|
45 |
+
torch.save(opt, "assets/weights/%s.pth" % name)
|
46 |
+
return "Success."
|
47 |
+
except:
|
48 |
+
return traceback.format_exc()
|
49 |
+
|
50 |
+
|
51 |
+
def show_info(path):
|
52 |
+
try:
|
53 |
+
a = torch.load(path, map_location="cpu")
|
54 |
+
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s\n版本:%s" % (
|
55 |
+
a.get("info", "None"),
|
56 |
+
a.get("sr", "None"),
|
57 |
+
a.get("f0", "None"),
|
58 |
+
a.get("version", "None"),
|
59 |
+
)
|
60 |
+
except:
|
61 |
+
return traceback.format_exc()
|
62 |
+
|
63 |
+
|
64 |
+
def extract_small_model(path, name, sr, if_f0, info, version):
|
65 |
+
try:
|
66 |
+
ckpt = torch.load(path, map_location="cpu")
|
67 |
+
if "model" in ckpt:
|
68 |
+
ckpt = ckpt["model"]
|
69 |
+
opt = OrderedDict()
|
70 |
+
opt["weight"] = {}
|
71 |
+
for key in ckpt.keys():
|
72 |
+
if "enc_q" in key:
|
73 |
+
continue
|
74 |
+
opt["weight"][key] = ckpt[key].half()
|
75 |
+
if sr == "40k":
|
76 |
+
opt["config"] = [
|
77 |
+
1025,
|
78 |
+
32,
|
79 |
+
192,
|
80 |
+
192,
|
81 |
+
768,
|
82 |
+
2,
|
83 |
+
6,
|
84 |
+
3,
|
85 |
+
0,
|
86 |
+
"1",
|
87 |
+
[3, 7, 11],
|
88 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
89 |
+
[10, 10, 2, 2],
|
90 |
+
512,
|
91 |
+
[16, 16, 4, 4],
|
92 |
+
109,
|
93 |
+
256,
|
94 |
+
40000,
|
95 |
+
]
|
96 |
+
elif sr == "48k":
|
97 |
+
if version == "v1":
|
98 |
+
opt["config"] = [
|
99 |
+
1025,
|
100 |
+
32,
|
101 |
+
192,
|
102 |
+
192,
|
103 |
+
768,
|
104 |
+
2,
|
105 |
+
6,
|
106 |
+
3,
|
107 |
+
0,
|
108 |
+
"1",
|
109 |
+
[3, 7, 11],
|
110 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
111 |
+
[10, 6, 2, 2, 2],
|
112 |
+
512,
|
113 |
+
[16, 16, 4, 4, 4],
|
114 |
+
109,
|
115 |
+
256,
|
116 |
+
48000,
|
117 |
+
]
|
118 |
+
else:
|
119 |
+
opt["config"] = [
|
120 |
+
1025,
|
121 |
+
32,
|
122 |
+
192,
|
123 |
+
192,
|
124 |
+
768,
|
125 |
+
2,
|
126 |
+
6,
|
127 |
+
3,
|
128 |
+
0,
|
129 |
+
"1",
|
130 |
+
[3, 7, 11],
|
131 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
132 |
+
[12, 10, 2, 2],
|
133 |
+
512,
|
134 |
+
[24, 20, 4, 4],
|
135 |
+
109,
|
136 |
+
256,
|
137 |
+
48000,
|
138 |
+
]
|
139 |
+
elif sr == "32k":
|
140 |
+
if version == "v1":
|
141 |
+
opt["config"] = [
|
142 |
+
513,
|
143 |
+
32,
|
144 |
+
192,
|
145 |
+
192,
|
146 |
+
768,
|
147 |
+
2,
|
148 |
+
6,
|
149 |
+
3,
|
150 |
+
0,
|
151 |
+
"1",
|
152 |
+
[3, 7, 11],
|
153 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
154 |
+
[10, 4, 2, 2, 2],
|
155 |
+
512,
|
156 |
+
[16, 16, 4, 4, 4],
|
157 |
+
109,
|
158 |
+
256,
|
159 |
+
32000,
|
160 |
+
]
|
161 |
+
else:
|
162 |
+
opt["config"] = [
|
163 |
+
513,
|
164 |
+
32,
|
165 |
+
192,
|
166 |
+
192,
|
167 |
+
768,
|
168 |
+
2,
|
169 |
+
6,
|
170 |
+
3,
|
171 |
+
0,
|
172 |
+
"1",
|
173 |
+
[3, 7, 11],
|
174 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
175 |
+
[10, 8, 2, 2],
|
176 |
+
512,
|
177 |
+
[20, 16, 4, 4],
|
178 |
+
109,
|
179 |
+
256,
|
180 |
+
32000,
|
181 |
+
]
|
182 |
+
if info == "":
|
183 |
+
info = "Extracted model."
|
184 |
+
opt["info"] = info
|
185 |
+
opt["version"] = version
|
186 |
+
opt["sr"] = sr
|
187 |
+
opt["f0"] = int(if_f0)
|
188 |
+
torch.save(opt, "assets/weights/%s.pth" % name)
|
189 |
+
return "Success."
|
190 |
+
except:
|
191 |
+
return traceback.format_exc()
|
192 |
+
|
193 |
+
|
194 |
+
def change_info(path, info, name):
|
195 |
+
try:
|
196 |
+
ckpt = torch.load(path, map_location="cpu")
|
197 |
+
ckpt["info"] = info
|
198 |
+
if name == "":
|
199 |
+
name = os.path.basename(path)
|
200 |
+
torch.save(ckpt, "assets/weights/%s" % name)
|
201 |
+
return "Success."
|
202 |
+
except:
|
203 |
+
return traceback.format_exc()
|
204 |
+
|
205 |
+
|
206 |
+
def merge(path1, path2, alpha1, sr, f0, info, name, version):
|
207 |
+
try:
|
208 |
+
|
209 |
+
def extract(ckpt):
|
210 |
+
a = ckpt["model"]
|
211 |
+
opt = OrderedDict()
|
212 |
+
opt["weight"] = {}
|
213 |
+
for key in a.keys():
|
214 |
+
if "enc_q" in key:
|
215 |
+
continue
|
216 |
+
opt["weight"][key] = a[key]
|
217 |
+
return opt
|
218 |
+
|
219 |
+
ckpt1 = torch.load(path1, map_location="cpu")
|
220 |
+
ckpt2 = torch.load(path2, map_location="cpu")
|
221 |
+
cfg = ckpt1["config"]
|
222 |
+
if "model" in ckpt1:
|
223 |
+
ckpt1 = extract(ckpt1)
|
224 |
+
else:
|
225 |
+
ckpt1 = ckpt1["weight"]
|
226 |
+
if "model" in ckpt2:
|
227 |
+
ckpt2 = extract(ckpt2)
|
228 |
+
else:
|
229 |
+
ckpt2 = ckpt2["weight"]
|
230 |
+
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())):
|
231 |
+
return "Fail to merge the models. The model architectures are not the same."
|
232 |
+
opt = OrderedDict()
|
233 |
+
opt["weight"] = {}
|
234 |
+
for key in ckpt1.keys():
|
235 |
+
# try:
|
236 |
+
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
|
237 |
+
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
|
238 |
+
opt["weight"][key] = (
|
239 |
+
alpha1 * (ckpt1[key][:min_shape0].float())
|
240 |
+
+ (1 - alpha1) * (ckpt2[key][:min_shape0].float())
|
241 |
+
).half()
|
242 |
+
else:
|
243 |
+
opt["weight"][key] = (
|
244 |
+
alpha1 * (ckpt1[key].float()) + (1 - alpha1) * (ckpt2[key].float())
|
245 |
+
).half()
|
246 |
+
# except:
|
247 |
+
# pdb.set_trace()
|
248 |
+
opt["config"] = cfg
|
249 |
+
"""
|
250 |
+
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 40000]
|
251 |
+
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4], 109, 256, 48000]
|
252 |
+
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
253 |
+
"""
|
254 |
+
opt["sr"] = sr
|
255 |
+
opt["f0"] = 1 if f0 == i18n("是") else 0
|
256 |
+
opt["version"] = version
|
257 |
+
opt["info"] = info
|
258 |
+
torch.save(opt, "assets/weights/%s.pth" % name)
|
259 |
+
return "Success."
|
260 |
+
except:
|
261 |
+
return traceback.format_exc()
|
lib/utils.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
from scipy.io.wavfile import read
|
13 |
+
|
14 |
+
MATPLOTLIB_FLAG = False
|
15 |
+
|
16 |
+
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
|
17 |
+
logger = logging
|
18 |
+
|
19 |
+
|
20 |
+
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
21 |
+
assert os.path.isfile(checkpoint_path)
|
22 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
23 |
+
|
24 |
+
##################
|
25 |
+
def go(model, bkey):
|
26 |
+
saved_state_dict = checkpoint_dict[bkey]
|
27 |
+
if hasattr(model, "module"):
|
28 |
+
state_dict = model.module.state_dict()
|
29 |
+
else:
|
30 |
+
state_dict = model.state_dict()
|
31 |
+
new_state_dict = {}
|
32 |
+
for k, v in state_dict.items(): # 模型需要的shape
|
33 |
+
try:
|
34 |
+
new_state_dict[k] = saved_state_dict[k]
|
35 |
+
if saved_state_dict[k].shape != state_dict[k].shape:
|
36 |
+
logger.warning(
|
37 |
+
"shape-%s-mismatch. need: %s, get: %s",
|
38 |
+
k,
|
39 |
+
state_dict[k].shape,
|
40 |
+
saved_state_dict[k].shape,
|
41 |
+
) #
|
42 |
+
raise KeyError
|
43 |
+
except:
|
44 |
+
# logger.info(traceback.format_exc())
|
45 |
+
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
46 |
+
new_state_dict[k] = v # 模型自带的随机值
|
47 |
+
if hasattr(model, "module"):
|
48 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
49 |
+
else:
|
50 |
+
model.load_state_dict(new_state_dict, strict=False)
|
51 |
+
return model
|
52 |
+
|
53 |
+
go(combd, "combd")
|
54 |
+
model = go(sbd, "sbd")
|
55 |
+
#############
|
56 |
+
logger.info("Loaded model weights")
|
57 |
+
|
58 |
+
iteration = checkpoint_dict["iteration"]
|
59 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
60 |
+
if (
|
61 |
+
optimizer is not None and load_opt == 1
|
62 |
+
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
63 |
+
# try:
|
64 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
65 |
+
# except:
|
66 |
+
# traceback.print_exc()
|
67 |
+
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
68 |
+
return model, optimizer, learning_rate, iteration
|
69 |
+
|
70 |
+
|
71 |
+
# def load_checkpoint(checkpoint_path, model, optimizer=None):
|
72 |
+
# assert os.path.isfile(checkpoint_path)
|
73 |
+
# checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
74 |
+
# iteration = checkpoint_dict['iteration']
|
75 |
+
# learning_rate = checkpoint_dict['learning_rate']
|
76 |
+
# if optimizer is not None:
|
77 |
+
# optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
78 |
+
# # print(1111)
|
79 |
+
# saved_state_dict = checkpoint_dict['model']
|
80 |
+
# # print(1111)
|
81 |
+
#
|
82 |
+
# if hasattr(model, 'module'):
|
83 |
+
# state_dict = model.module.state_dict()
|
84 |
+
# else:
|
85 |
+
# state_dict = model.state_dict()
|
86 |
+
# new_state_dict= {}
|
87 |
+
# for k, v in state_dict.items():
|
88 |
+
# try:
|
89 |
+
# new_state_dict[k] = saved_state_dict[k]
|
90 |
+
# except:
|
91 |
+
# logger.info("%s is not in the checkpoint" % k)
|
92 |
+
# new_state_dict[k] = v
|
93 |
+
# if hasattr(model, 'module'):
|
94 |
+
# model.module.load_state_dict(new_state_dict)
|
95 |
+
# else:
|
96 |
+
# model.load_state_dict(new_state_dict)
|
97 |
+
# logger.info("Loaded checkpoint '{}' (epoch {})" .format(
|
98 |
+
# checkpoint_path, iteration))
|
99 |
+
# return model, optimizer, learning_rate, iteration
|
100 |
+
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
101 |
+
assert os.path.isfile(checkpoint_path)
|
102 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
103 |
+
|
104 |
+
saved_state_dict = checkpoint_dict["model"]
|
105 |
+
if hasattr(model, "module"):
|
106 |
+
state_dict = model.module.state_dict()
|
107 |
+
else:
|
108 |
+
state_dict = model.state_dict()
|
109 |
+
new_state_dict = {}
|
110 |
+
for k, v in state_dict.items(): # 模型需要的shape
|
111 |
+
try:
|
112 |
+
new_state_dict[k] = saved_state_dict[k]
|
113 |
+
if saved_state_dict[k].shape != state_dict[k].shape:
|
114 |
+
logger.warning(
|
115 |
+
"shape-%s-mismatch|need-%s|get-%s",
|
116 |
+
k,
|
117 |
+
state_dict[k].shape,
|
118 |
+
saved_state_dict[k].shape,
|
119 |
+
) #
|
120 |
+
raise KeyError
|
121 |
+
except:
|
122 |
+
# logger.info(traceback.format_exc())
|
123 |
+
logger.info("%s is not in the checkpoint", k) # pretrain缺失的
|
124 |
+
new_state_dict[k] = v # 模型自带的随机值
|
125 |
+
if hasattr(model, "module"):
|
126 |
+
model.module.load_state_dict(new_state_dict, strict=False)
|
127 |
+
else:
|
128 |
+
model.load_state_dict(new_state_dict, strict=False)
|
129 |
+
logger.info("Loaded model weights")
|
130 |
+
|
131 |
+
iteration = checkpoint_dict["iteration"]
|
132 |
+
learning_rate = checkpoint_dict["learning_rate"]
|
133 |
+
if (
|
134 |
+
optimizer is not None and load_opt == 1
|
135 |
+
): ###加载不了,如果是空的的话,重新初始化,可能还会影响lr时间表的更新,因此在train文件最外围catch
|
136 |
+
# try:
|
137 |
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
138 |
+
# except:
|
139 |
+
# traceback.print_exc()
|
140 |
+
logger.info("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration))
|
141 |
+
return model, optimizer, learning_rate, iteration
|
142 |
+
|
143 |
+
|
144 |
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
145 |
+
logger.info(
|
146 |
+
"Saving model and optimizer state at epoch {} to {}".format(
|
147 |
+
iteration, checkpoint_path
|
148 |
+
)
|
149 |
+
)
|
150 |
+
if hasattr(model, "module"):
|
151 |
+
state_dict = model.module.state_dict()
|
152 |
+
else:
|
153 |
+
state_dict = model.state_dict()
|
154 |
+
torch.save(
|
155 |
+
{
|
156 |
+
"model": state_dict,
|
157 |
+
"iteration": iteration,
|
158 |
+
"optimizer": optimizer.state_dict(),
|
159 |
+
"learning_rate": learning_rate,
|
160 |
+
},
|
161 |
+
checkpoint_path,
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
|
166 |
+
logger.info(
|
167 |
+
"Saving model and optimizer state at epoch {} to {}".format(
|
168 |
+
iteration, checkpoint_path
|
169 |
+
)
|
170 |
+
)
|
171 |
+
if hasattr(combd, "module"):
|
172 |
+
state_dict_combd = combd.module.state_dict()
|
173 |
+
else:
|
174 |
+
state_dict_combd = combd.state_dict()
|
175 |
+
if hasattr(sbd, "module"):
|
176 |
+
state_dict_sbd = sbd.module.state_dict()
|
177 |
+
else:
|
178 |
+
state_dict_sbd = sbd.state_dict()
|
179 |
+
torch.save(
|
180 |
+
{
|
181 |
+
"combd": state_dict_combd,
|
182 |
+
"sbd": state_dict_sbd,
|
183 |
+
"iteration": iteration,
|
184 |
+
"optimizer": optimizer.state_dict(),
|
185 |
+
"learning_rate": learning_rate,
|
186 |
+
},
|
187 |
+
checkpoint_path,
|
188 |
+
)
|
189 |
+
|
190 |
+
|
191 |
+
def summarize(
|
192 |
+
writer,
|
193 |
+
global_step,
|
194 |
+
scalars={},
|
195 |
+
histograms={},
|
196 |
+
images={},
|
197 |
+
audios={},
|
198 |
+
audio_sampling_rate=22050,
|
199 |
+
):
|
200 |
+
for k, v in scalars.items():
|
201 |
+
writer.add_scalar(k, v, global_step)
|
202 |
+
for k, v in histograms.items():
|
203 |
+
writer.add_histogram(k, v, global_step)
|
204 |
+
for k, v in images.items():
|
205 |
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
206 |
+
for k, v in audios.items():
|
207 |
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
208 |
+
|
209 |
+
|
210 |
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
211 |
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
212 |
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
213 |
+
x = f_list[-1]
|
214 |
+
logger.debug(x)
|
215 |
+
return x
|
216 |
+
|
217 |
+
|
218 |
+
def plot_spectrogram_to_numpy(spectrogram):
|
219 |
+
global MATPLOTLIB_FLAG
|
220 |
+
if not MATPLOTLIB_FLAG:
|
221 |
+
import matplotlib
|
222 |
+
|
223 |
+
matplotlib.use("Agg")
|
224 |
+
MATPLOTLIB_FLAG = True
|
225 |
+
mpl_logger = logging.getLogger("matplotlib")
|
226 |
+
mpl_logger.setLevel(logging.WARNING)
|
227 |
+
import matplotlib.pylab as plt
|
228 |
+
import numpy as np
|
229 |
+
|
230 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
231 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
232 |
+
plt.colorbar(im, ax=ax)
|
233 |
+
plt.xlabel("Frames")
|
234 |
+
plt.ylabel("Channels")
|
235 |
+
plt.tight_layout()
|
236 |
+
|
237 |
+
fig.canvas.draw()
|
238 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
239 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
240 |
+
plt.close()
|
241 |
+
return data
|
242 |
+
|
243 |
+
|
244 |
+
def plot_alignment_to_numpy(alignment, info=None):
|
245 |
+
global MATPLOTLIB_FLAG
|
246 |
+
if not MATPLOTLIB_FLAG:
|
247 |
+
import matplotlib
|
248 |
+
|
249 |
+
matplotlib.use("Agg")
|
250 |
+
MATPLOTLIB_FLAG = True
|
251 |
+
mpl_logger = logging.getLogger("matplotlib")
|
252 |
+
mpl_logger.setLevel(logging.WARNING)
|
253 |
+
import matplotlib.pylab as plt
|
254 |
+
import numpy as np
|
255 |
+
|
256 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
257 |
+
im = ax.imshow(
|
258 |
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
259 |
+
)
|
260 |
+
fig.colorbar(im, ax=ax)
|
261 |
+
xlabel = "Decoder timestep"
|
262 |
+
if info is not None:
|
263 |
+
xlabel += "\n\n" + info
|
264 |
+
plt.xlabel(xlabel)
|
265 |
+
plt.ylabel("Encoder timestep")
|
266 |
+
plt.tight_layout()
|
267 |
+
|
268 |
+
fig.canvas.draw()
|
269 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
270 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
271 |
+
plt.close()
|
272 |
+
return data
|
273 |
+
|
274 |
+
|
275 |
+
def load_wav_to_torch(full_path):
|
276 |
+
sampling_rate, data = read(full_path)
|
277 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
278 |
+
|
279 |
+
|
280 |
+
def load_filepaths_and_text(filename, split="|"):
|
281 |
+
with open(filename, encoding="utf-8") as f:
|
282 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
283 |
+
return filepaths_and_text
|
284 |
+
|
285 |
+
|
286 |
+
def get_hparams(init=True):
|
287 |
+
"""
|
288 |
+
todo:
|
289 |
+
结尾七人组:
|
290 |
+
保存频率、总epoch done
|
291 |
+
bs done
|
292 |
+
pretrainG、pretrainD done
|
293 |
+
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
294 |
+
if_latest done
|
295 |
+
模型:if_f0 done
|
296 |
+
采样率:自动选择config done
|
297 |
+
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
298 |
+
|
299 |
+
-m:
|
300 |
+
自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done
|
301 |
+
-c不要了
|
302 |
+
"""
|
303 |
+
parser = argparse.ArgumentParser()
|
304 |
+
parser.add_argument(
|
305 |
+
"-se",
|
306 |
+
"--save_every_epoch",
|
307 |
+
type=int,
|
308 |
+
required=True,
|
309 |
+
help="checkpoint save frequency (epoch)",
|
310 |
+
)
|
311 |
+
parser.add_argument(
|
312 |
+
"-te", "--total_epoch", type=int, required=True, help="total_epoch"
|
313 |
+
)
|
314 |
+
parser.add_argument(
|
315 |
+
"-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path"
|
316 |
+
)
|
317 |
+
parser.add_argument(
|
318 |
+
"-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path"
|
319 |
+
)
|
320 |
+
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -")
|
321 |
+
parser.add_argument(
|
322 |
+
"-bs", "--batch_size", type=int, required=True, help="batch size"
|
323 |
+
)
|
324 |
+
parser.add_argument(
|
325 |
+
"-e", "--experiment_dir", type=str, required=True, help="experiment dir"
|
326 |
+
) # -m
|
327 |
+
parser.add_argument(
|
328 |
+
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
329 |
+
)
|
330 |
+
parser.add_argument(
|
331 |
+
"-sw",
|
332 |
+
"--save_every_weights",
|
333 |
+
type=str,
|
334 |
+
default="0",
|
335 |
+
help="save the extracted model in weights directory when saving checkpoints",
|
336 |
+
)
|
337 |
+
parser.add_argument(
|
338 |
+
"-v", "--version", type=str, required=True, help="model version"
|
339 |
+
)
|
340 |
+
parser.add_argument(
|
341 |
+
"-f0",
|
342 |
+
"--if_f0",
|
343 |
+
type=int,
|
344 |
+
required=True,
|
345 |
+
help="use f0 as one of the inputs of the model, 1 or 0",
|
346 |
+
)
|
347 |
+
parser.add_argument(
|
348 |
+
"-l",
|
349 |
+
"--if_latest",
|
350 |
+
type=int,
|
351 |
+
required=True,
|
352 |
+
help="if only save the latest G/D pth file, 1 or 0",
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"-c",
|
356 |
+
"--if_cache_data_in_gpu",
|
357 |
+
type=int,
|
358 |
+
required=True,
|
359 |
+
help="if caching the dataset in GPU memory, 1 or 0",
|
360 |
+
)
|
361 |
+
|
362 |
+
args = parser.parse_args()
|
363 |
+
name = args.experiment_dir
|
364 |
+
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
365 |
+
|
366 |
+
config_save_path = os.path.join(experiment_dir, "config.json")
|
367 |
+
with open(config_save_path, "r") as f:
|
368 |
+
config = json.load(f)
|
369 |
+
|
370 |
+
hparams = HParams(**config)
|
371 |
+
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
372 |
+
hparams.save_every_epoch = args.save_every_epoch
|
373 |
+
hparams.name = name
|
374 |
+
hparams.total_epoch = args.total_epoch
|
375 |
+
hparams.pretrainG = args.pretrainG
|
376 |
+
hparams.pretrainD = args.pretrainD
|
377 |
+
hparams.version = args.version
|
378 |
+
hparams.gpus = args.gpus
|
379 |
+
hparams.train.batch_size = args.batch_size
|
380 |
+
hparams.sample_rate = args.sample_rate
|
381 |
+
hparams.if_f0 = args.if_f0
|
382 |
+
hparams.if_latest = args.if_latest
|
383 |
+
hparams.save_every_weights = args.save_every_weights
|
384 |
+
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
385 |
+
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
386 |
+
return hparams
|
387 |
+
|
388 |
+
|
389 |
+
def get_hparams_from_dir(model_dir):
|
390 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
391 |
+
with open(config_save_path, "r") as f:
|
392 |
+
data = f.read()
|
393 |
+
config = json.loads(data)
|
394 |
+
|
395 |
+
hparams = HParams(**config)
|
396 |
+
hparams.model_dir = model_dir
|
397 |
+
return hparams
|
398 |
+
|
399 |
+
|
400 |
+
def get_hparams_from_file(config_path):
|
401 |
+
with open(config_path, "r") as f:
|
402 |
+
data = f.read()
|
403 |
+
config = json.loads(data)
|
404 |
+
|
405 |
+
hparams = HParams(**config)
|
406 |
+
return hparams
|
407 |
+
|
408 |
+
|
409 |
+
def check_git_hash(model_dir):
|
410 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
411 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
412 |
+
logger.warning(
|
413 |
+
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
414 |
+
source_dir
|
415 |
+
)
|
416 |
+
)
|
417 |
+
return
|
418 |
+
|
419 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
420 |
+
|
421 |
+
path = os.path.join(model_dir, "githash")
|
422 |
+
if os.path.exists(path):
|
423 |
+
saved_hash = open(path).read()
|
424 |
+
if saved_hash != cur_hash:
|
425 |
+
logger.warning(
|
426 |
+
"git hash values are different. {}(saved) != {}(current)".format(
|
427 |
+
saved_hash[:8], cur_hash[:8]
|
428 |
+
)
|
429 |
+
)
|
430 |
+
else:
|
431 |
+
open(path, "w").write(cur_hash)
|
432 |
+
|
433 |
+
|
434 |
+
def get_logger(model_dir, filename="train.log"):
|
435 |
+
global logger
|
436 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
437 |
+
logger.setLevel(logging.DEBUG)
|
438 |
+
|
439 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
440 |
+
if not os.path.exists(model_dir):
|
441 |
+
os.makedirs(model_dir)
|
442 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
443 |
+
h.setLevel(logging.DEBUG)
|
444 |
+
h.setFormatter(formatter)
|
445 |
+
logger.addHandler(h)
|
446 |
+
return logger
|
447 |
+
|
448 |
+
|
449 |
+
class HParams:
|
450 |
+
def __init__(self, **kwargs):
|
451 |
+
for k, v in kwargs.items():
|
452 |
+
if type(v) == dict:
|
453 |
+
v = HParams(**v)
|
454 |
+
self[k] = v
|
455 |
+
|
456 |
+
def keys(self):
|
457 |
+
return self.__dict__.keys()
|
458 |
+
|
459 |
+
def items(self):
|
460 |
+
return self.__dict__.items()
|
461 |
+
|
462 |
+
def values(self):
|
463 |
+
return self.__dict__.values()
|
464 |
+
|
465 |
+
def __len__(self):
|
466 |
+
return len(self.__dict__)
|
467 |
+
|
468 |
+
def __getitem__(self, key):
|
469 |
+
return getattr(self, key)
|
470 |
+
|
471 |
+
def __setitem__(self, key, value):
|
472 |
+
return setattr(self, key, value)
|
473 |
+
|
474 |
+
def __contains__(self, key):
|
475 |
+
return key in self.__dict__
|
476 |
+
|
477 |
+
def __repr__(self):
|
478 |
+
return self.__dict__.__repr__()
|