Spaces:
Runtime error
Runtime error
import matplotlib | |
from torch.nn import functional as F | |
import torch | |
matplotlib.use('Agg') | |
import time | |
class Timer(): | |
''' Timer for recording training time distribution. ''' | |
def __init__(self): | |
self.prev_t = time.time() | |
self.clear() | |
def set(self): | |
self.prev_t = time.time() | |
def cnt(self, mode): | |
self.time_table[mode] += time.time()-self.prev_t | |
self.set() | |
if mode == 'bw': | |
self.click += 1 | |
def show(self): | |
total_time = sum(self.time_table.values()) | |
self.time_table['avg'] = total_time/self.click | |
self.time_table['rd'] = 100*self.time_table['rd']/total_time | |
self.time_table['fw'] = 100*self.time_table['fw']/total_time | |
self.time_table['bw'] = 100*self.time_table['bw']/total_time | |
msg = '{avg:.3f} sec/step (rd {rd:.1f}% | fw {fw:.1f}% | bw {bw:.1f}%)'.format( | |
**self.time_table) | |
self.clear() | |
return msg | |
def clear(self): | |
self.time_table = {'rd': 0, 'fw': 0, 'bw': 0} | |
self.click = 0 | |
# Reference : https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/e2e_asr.py#L168 | |
def human_format(num): | |
magnitude = 0 | |
while num >= 1000: | |
magnitude += 1 | |
num /= 1000.0 | |
# add more suffixes if you need them | |
return '{:3.1f}{}'.format(num, [' ', 'K', 'M', 'G', 'T', 'P'][magnitude]) | |
# provide easy access of attribute from dict, such abc.key | |
class AttrDict(dict): | |
def __init__(self, *args, **kwargs): | |
super(AttrDict, self).__init__(*args, **kwargs) | |
self.__dict__ = self | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size*dilation - dilation)/2) | |
def sequence_mask(length, max_length=None): | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
def slice_segments(x, ids_str, segment_size=4): | |
ret = torch.zeros_like(x[:, :, :segment_size]) | |
for i in range(x.size(0)): | |
idx_str = ids_str[i] | |
idx_end = idx_str + segment_size | |
ret[i] = x[i, :, idx_str:idx_end] | |
return ret | |
def rand_slice_segments(x, x_lengths=None, segment_size=4): | |
b, d, t = x.size() | |
if x_lengths is None: | |
x_lengths = t | |
ids_str_max = x_lengths - segment_size + 1 | |
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) | |
ret = slice_segments(x, ids_str, segment_size) | |
return ret, ids_str | |
def convert_pad_shape(pad_shape): | |
l = pad_shape[::-1] | |
pad_shape = [item for sublist in l for item in sublist] | |
return pad_shape | |
def generate_path(duration, mask): | |
""" | |
duration: [b, 1, t_x] | |
mask: [b, 1, t_y, t_x] | |
""" | |
device = duration.device | |
b, _, t_y, t_x = mask.shape | |
cum_duration = torch.cumsum(duration, -1) | |
cum_duration_flat = cum_duration.view(b * t_x) | |
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | |
path = path.view(b, t_x, t_y) | |
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] | |
path = path.unsqueeze(1).transpose(2,3) * mask | |
return path | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
def subsequent_mask(length): | |
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) | |
return mask | |
def intersperse(lst, item): | |
result = [item] * (len(lst) * 2 + 1) | |
result[1::2] = lst | |
return result | |
def clip_grad_value_(parameters, clip_value, norm_type=2): | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
norm_type = float(norm_type) | |
if clip_value is not None: | |
clip_value = float(clip_value) | |
total_norm = 0 | |
for p in parameters: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm.item() ** norm_type | |
if clip_value is not None: | |
p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
total_norm = total_norm ** (1. / norm_type) | |
return total_norm | |