smf2010's picture
Upload 204 files
a23d717 verified
from pydantic import BaseModel, Field
import os
from pathlib import Path
from enum import Enum
from typing import Any, Tuple
import numpy as np
from utils.hparams import HpsYaml
from utils.util import AttrDict
import torch
# Constants
EXT_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}ppg_extractor"
CONV_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}ppg2mel"
ENC_MODELS_DIRT = f"data{os.sep}ckpt{os.sep}encoder"
if os.path.isdir(EXT_MODELS_DIRT):
extractors = Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt")))
print("Loaded extractor models: " + str(len(extractors)))
else:
raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.")
if os.path.isdir(CONV_MODELS_DIRT):
convertors = Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth")))
print("Loaded convertor models: " + str(len(convertors)))
else:
raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.")
if os.path.isdir(ENC_MODELS_DIRT):
encoders = Enum('encoders', list((file.name, file) for file in Path(ENC_MODELS_DIRT).glob("**/*.pt")))
print("Loaded encoders models: " + str(len(encoders)))
else:
raise Exception(f"Model folder {ENC_MODELS_DIRT} doesn't exist.")
class Model(str, Enum):
VC_PPG2MEL = "ppg2mel"
class Dataset(str, Enum):
AIDATATANG_200ZH = "aidatatang_200zh"
AIDATATANG_200ZH_S = "aidatatang_200zh_s"
class Input(BaseModel):
# def render_input_ui(st, input) -> Dict:
# input["selected_dataset"] = st.selectbox(
# '้€‰ๆ‹ฉๆ•ฐๆฎ้›†',
# ("aidatatang_200zh", "aidatatang_200zh_s")
# )
# return input
model: Model = Field(
Model.VC_PPG2MEL, title="ๆจกๅž‹็ฑปๅž‹",
)
# datasets_root: str = Field(
# ..., alias="้ข„ๅค„็†ๆ•ฐๆฎๆ น็›ฎๅฝ•", description="่พ“ๅ…ฅ็›ฎๅฝ•๏ผˆ็›ธๅฏน/็ปๅฏน๏ผ‰,ไธ้€‚็”จไบŽppg2melๆจกๅž‹",
# format=True,
# example="..\\trainning_data\\"
# )
output_root: str = Field(
..., alias="่พ“ๅ‡บ็›ฎๅฝ•(ๅฏ้€‰)", description="ๅปบ่ฎฎไธๅกซ๏ผŒไฟๆŒ้ป˜่ฎค",
format=True,
example=""
)
continue_mode: bool = Field(
True, alias="็ปง็ปญ่ฎญ็ปƒๆจกๅผ", description="้€‰ๆ‹ฉโ€œๆ˜ฏโ€๏ผŒๅˆ™ไปŽไธ‹้ข้€‰ๆ‹ฉ็š„ๆจกๅž‹ไธญ็ปง็ปญ่ฎญ็ปƒ",
)
gpu: bool = Field(
True, alias="GPU่ฎญ็ปƒ", description="้€‰ๆ‹ฉโ€œๆ˜ฏโ€๏ผŒๅˆ™ไฝฟ็”จGPU่ฎญ็ปƒ",
)
verbose: bool = Field(
True, alias="ๆ‰“ๅฐ่ฏฆๆƒ…", description="้€‰ๆ‹ฉโ€œๆ˜ฏโ€๏ผŒ่พ“ๅ‡บๆ›ดๅคš่ฏฆๆƒ…",
)
# TODO: Move to hiden fields by default
convertor: convertors = Field(
..., alias="่ฝฌๆขๆจกๅž‹",
description="้€‰ๆ‹ฉ่ฏญ้Ÿณ่ฝฌๆขๆจกๅž‹ๆ–‡ไปถ."
)
extractor: extractors = Field(
..., alias="็‰นๅพๆๅ–ๆจกๅž‹",
description="้€‰ๆ‹ฉPPG็‰นๅพๆๅ–ๆจกๅž‹ๆ–‡ไปถ."
)
encoder: encoders = Field(
..., alias="่ฏญ้Ÿณ็ผ–็ ๆจกๅž‹",
description="้€‰ๆ‹ฉ่ฏญ้Ÿณ็ผ–็ ๆจกๅž‹ๆ–‡ไปถ."
)
njobs: int = Field(
8, alias="่ฟ›็จ‹ๆ•ฐ", description="้€‚็”จไบŽppg2mel",
)
seed: int = Field(
default=0, alias="ๅˆๅง‹้šๆœบๆ•ฐ", description="้€‚็”จไบŽppg2mel",
)
model_name: str = Field(
..., alias="ๆ–ฐๆจกๅž‹ๅ", description="ไป…ๅœจ้‡ๆ–ฐ่ฎญ็ปƒๆ—ถ็”Ÿๆ•ˆ,้€‰ไธญ็ปง็ปญ่ฎญ็ปƒๆ—ถๆ— ๆ•ˆ",
example="test"
)
model_config: str = Field(
..., alias="ๆ–ฐๆจกๅž‹้…็ฝฎ", description="ไป…ๅœจ้‡ๆ–ฐ่ฎญ็ปƒๆ—ถ็”Ÿๆ•ˆ,้€‰ไธญ็ปง็ปญ่ฎญ็ปƒๆ—ถๆ— ๆ•ˆ",
example=".\\ppg2mel\\saved_models\\seq2seq_mol_ppg2mel_vctk_libri_oneshotvc_r4_normMel_v2"
)
class AudioEntity(BaseModel):
content: bytes
mel: Any
class Output(BaseModel):
__root__: Tuple[str, int]
def render_output_ui(self, streamlit_app, input) -> None: # type: ignore
"""Custom output UI.
If this method is implmeneted, it will be used instead of the default Output UI renderer.
"""
sr, count = self.__root__
streamlit_app.subheader(f"Dataset {sr} done processed total of {count}")
def train_vc(input: Input) -> Output:
"""Train VC(่ฎญ็ปƒ VC)"""
print(">>> OneShot VC training ...")
params = AttrDict()
params.update({
"gpu": input.gpu,
"cpu": not input.gpu,
"njobs": input.njobs,
"seed": input.seed,
"verbose": input.verbose,
"load": input.convertor.value,
"warm_start": False,
})
if input.continue_mode:
# trace old model and config
p = Path(input.convertor.value)
params.name = p.parent.name
# search a config file
model_config_fpaths = list(p.parent.rglob("*.yaml"))
if len(model_config_fpaths) == 0:
raise "No model yaml config found for convertor"
config = HpsYaml(model_config_fpaths[0])
params.ckpdir = p.parent.parent
params.config = model_config_fpaths[0]
params.logdir = os.path.join(p.parent, "log")
else:
# Make the config dict dot visitable
config = HpsYaml(input.config)
np.random.seed(input.seed)
torch.manual_seed(input.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(input.seed)
mode = "train"
from models.ppg2mel.train.train_linglf02mel_seq2seq_oneshotvc import Solver
solver = Solver(config, params, mode)
solver.load_data()
solver.set_model()
solver.exec()
print(">>> Oneshot VC train finished!")
# TODO: pass useful return code
return Output(__root__=(input.dataset, 0))