smf2010's picture
Upload 204 files
a23d717 verified
import os
from enum import Enum
from pathlib import Path
from typing import Any, Tuple
import librosa
import matplotlib.pyplot as plt
import torch
from pydantic import BaseModel, Field
from scipy.io.wavfile import write
import models.ppg2mel as Convertor
import models.ppg_extractor as Extractor
from control.mkgui.base.components.types import FileContent
from models.encoder import inference as speacker_encoder
from models.synthesizer.inference import Synthesizer
from models.vocoder.hifigan import inference as gan_vocoder
# Constants
AUDIO_SAMPLES_DIR = f'data{os.sep}samples{os.sep}'
EXT_MODELS_DIRT = f'data{os.sep}ckpt{os.sep}ppg_extractor'
CONV_MODELS_DIRT = f'data{os.sep}ckpt{os.sep}ppg2mel'
VOC_MODELS_DIRT = f'data{os.sep}ckpt{os.sep}vocoder'
TEMP_SOURCE_AUDIO = f'wavs{os.sep}temp_source.wav'
TEMP_TARGET_AUDIO = f'wavs{os.sep}temp_target.wav'
TEMP_RESULT_AUDIO = f'wavs{os.sep}temp_result.wav'
# Load local sample audio as options TODO: load dataset
if os.path.isdir(AUDIO_SAMPLES_DIR):
audio_input_selection = Enum('samples', list((file.name, file) for file in Path(AUDIO_SAMPLES_DIR).glob("*.wav")))
# Pre-Load models
if os.path.isdir(EXT_MODELS_DIRT):
extractors = Enum('extractors', list((file.name, file) for file in Path(EXT_MODELS_DIRT).glob("**/*.pt")))
print("Loaded extractor models: " + str(len(extractors)))
else:
raise Exception(f"Model folder {EXT_MODELS_DIRT} doesn't exist.")
if os.path.isdir(CONV_MODELS_DIRT):
convertors = Enum('convertors', list((file.name, file) for file in Path(CONV_MODELS_DIRT).glob("**/*.pth")))
print("Loaded convertor models: " + str(len(convertors)))
else:
raise Exception(f"Model folder {CONV_MODELS_DIRT} doesn't exist.")
if os.path.isdir(VOC_MODELS_DIRT):
vocoders = Enum('vocoders', list((file.name, file) for file in Path(VOC_MODELS_DIRT).glob("**/*gan*.pt")))
print("Loaded vocoders models: " + str(len(vocoders)))
else:
raise Exception(f"Model folder {VOC_MODELS_DIRT} doesn't exist.")
class Input(BaseModel):
local_audio_file: audio_input_selection = Field(
..., alias="่พ“ๅ…ฅ่ฏญ้Ÿณ๏ผˆๆœฌๅœฐwav๏ผ‰",
description="้€‰ๆ‹ฉๆœฌๅœฐ่ฏญ้Ÿณๆ–‡ไปถ."
)
upload_audio_file: FileContent = Field(default=None, alias="ๆˆ–ไธŠไผ ่ฏญ้Ÿณ",
description="ๆ‹–ๆ‹ฝๆˆ–็‚นๅ‡ปไธŠไผ .", mime_type="audio/wav")
local_audio_file_target: audio_input_selection = Field(
..., alias="็›ฎๆ ‡่ฏญ้Ÿณ๏ผˆๆœฌๅœฐwav๏ผ‰",
description="้€‰ๆ‹ฉๆœฌๅœฐ่ฏญ้Ÿณๆ–‡ไปถ."
)
upload_audio_file_target: FileContent = Field(default=None, alias="ๆˆ–ไธŠไผ ็›ฎๆ ‡่ฏญ้Ÿณ",
description="ๆ‹–ๆ‹ฝๆˆ–็‚นๅ‡ปไธŠไผ .", mime_type="audio/wav")
extractor: extractors = Field(
..., alias="็ผ–็ ๆจกๅž‹",
description="้€‰ๆ‹ฉ่ฏญ้Ÿณ็ผ–็ ๆจกๅž‹ๆ–‡ไปถ."
)
convertor: convertors = Field(
..., alias="่ฝฌๆขๆจกๅž‹",
description="้€‰ๆ‹ฉ่ฏญ้Ÿณ่ฝฌๆขๆจกๅž‹ๆ–‡ไปถ."
)
vocoder: vocoders = Field(
..., alias="่ฏญ้Ÿณ่งฃ็ ๆจกๅž‹",
description="้€‰ๆ‹ฉ่ฏญ้Ÿณ่งฃ็ ๆจกๅž‹ๆ–‡ไปถ(็›ฎๅ‰ๅชๆ”ฏๆŒHifiGan็ฑปๅž‹)."
)
class AudioEntity(BaseModel):
content: bytes
mel: Any
class Output(BaseModel):
__root__: Tuple[AudioEntity, AudioEntity, AudioEntity]
def render_output_ui(self, streamlit_app, input) -> None: # type: ignore
"""Custom output UI.
If this method is implmeneted, it will be used instead of the default Output UI renderer.
"""
src, target, result = self.__root__
streamlit_app.subheader("Synthesized Audio")
streamlit_app.audio(result.content, format="audio/wav")
fig, ax = plt.subplots()
ax.imshow(src.mel, aspect="equal", interpolation="none")
ax.set_title("mel spectrogram(Source Audio)")
streamlit_app.pyplot(fig)
fig, ax = plt.subplots()
ax.imshow(target.mel, aspect="equal", interpolation="none")
ax.set_title("mel spectrogram(Target Audio)")
streamlit_app.pyplot(fig)
fig, ax = plt.subplots()
ax.imshow(result.mel, aspect="equal", interpolation="none")
ax.set_title("mel spectrogram(Result Audio)")
streamlit_app.pyplot(fig)
def convert(input: Input) -> Output:
"""convert(่ฝฌๆข)"""
# load models
extractor = Extractor.load_model(Path(input.extractor.value))
convertor = Convertor.load_model(Path(input.convertor.value))
# current_synt = Synthesizer(Path(input.synthesizer.value))
gan_vocoder.load_model(Path(input.vocoder.value))
# load file
if input.upload_audio_file != None:
with open(TEMP_SOURCE_AUDIO, "w+b") as f:
f.write(input.upload_audio_file.as_bytes())
f.seek(0)
src_wav, sample_rate = librosa.load(TEMP_SOURCE_AUDIO)
else:
src_wav, sample_rate = librosa.load(input.local_audio_file.value)
write(TEMP_SOURCE_AUDIO, sample_rate, src_wav) #Make sure we get the correct wav
if input.upload_audio_file_target != None:
with open(TEMP_TARGET_AUDIO, "w+b") as f:
f.write(input.upload_audio_file_target.as_bytes())
f.seek(0)
ref_wav, _ = librosa.load(TEMP_TARGET_AUDIO)
else:
ref_wav, _ = librosa.load(input.local_audio_file_target.value)
write(TEMP_TARGET_AUDIO, sample_rate, ref_wav) #Make sure we get the correct wav
ppg = extractor.extract_from_wav(src_wav)
# Import necessary dependency of Voice Conversion
from utils.f0_utils import (compute_f0, compute_mean_std, f02lf0,
get_converted_lf0uv)
ref_lf0_mean, ref_lf0_std = compute_mean_std(f02lf0(compute_f0(ref_wav)))
speacker_encoder.load_model(Path(f"data{os.sep}ckpt{os.sep}encoder{os.sep}pretrained_bak_5805000.pt"))
embed = speacker_encoder.embed_utterance(ref_wav)
lf0_uv = get_converted_lf0uv(src_wav, ref_lf0_mean, ref_lf0_std, convert=True)
min_len = min(ppg.shape[1], len(lf0_uv))
ppg = ppg[:, :min_len]
lf0_uv = lf0_uv[:min_len]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
_, mel_pred, att_ws = convertor.inference(
ppg,
logf0_uv=torch.from_numpy(lf0_uv).unsqueeze(0).float().to(device),
spembs=torch.from_numpy(embed).unsqueeze(0).to(device),
)
mel_pred= mel_pred.transpose(0, 1)
breaks = [mel_pred.shape[1]]
mel_pred= mel_pred.detach().cpu().numpy()
# synthesize and vocode
wav, sample_rate = gan_vocoder.infer_waveform(mel_pred)
# write and output
write(TEMP_RESULT_AUDIO, sample_rate, wav) #Make sure we get the correct wav
with open(TEMP_SOURCE_AUDIO, "rb") as f:
source_file = f.read()
with open(TEMP_TARGET_AUDIO, "rb") as f:
target_file = f.read()
with open(TEMP_RESULT_AUDIO, "rb") as f:
result_file = f.read()
return Output(__root__=(AudioEntity(content=source_file, mel=Synthesizer.make_spectrogram(src_wav)), AudioEntity(content=target_file, mel=Synthesizer.make_spectrogram(ref_wav)), AudioEntity(content=result_file, mel=Synthesizer.make_spectrogram(wav))))