Spaces:
Runtime error
Runtime error
Madhavan Iyengar
commited on
Commit
•
f169450
1
Parent(s):
69aca8d
fix decimal issue
Browse files- src/display/utils.py +12 -10
- src/populate.py +3 -2
src/display/utils.py
CHANGED
@@ -5,6 +5,8 @@ import pandas as pd
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
|
|
|
|
8 |
def fields(raw_class):
|
9 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
10 |
|
@@ -26,19 +28,19 @@ auto_eval_column_dict = []
|
|
26 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
#Scores
|
29 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
32 |
# Model information
|
33 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str",
|
34 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str",
|
35 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str",
|
36 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str",
|
37 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str",
|
38 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number",
|
39 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number",
|
40 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool",
|
41 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False,
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
5 |
|
6 |
from src.about import Tasks
|
7 |
|
8 |
+
pd.set_option('display.float_format', '{:.2f}'.format)
|
9 |
+
|
10 |
def fields(raw_class):
|
11 |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
12 |
|
|
|
28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
30 |
#Scores
|
31 |
+
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
32 |
for task in Tasks:
|
33 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
34 |
# Model information
|
35 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", True)])
|
36 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", True)])
|
37 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", True, False)])
|
38 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)])
|
39 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", True)])
|
40 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
|
41 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", True)])
|
42 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", True)])
|
43 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
44 |
|
45 |
# We use make dataclass to dynamically fill the scores from Tasks
|
46 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/populate.py
CHANGED
@@ -14,8 +14,9 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
17 |
-
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
-
df = df[cols].round(decimals=2)
|
|
|
19 |
|
20 |
# filter out if any of the benchmarks have not been produced
|
21 |
df = df[has_no_nan_values(df, benchmark_cols)]
|
|
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
16 |
df = pd.DataFrame.from_records(all_data_json)
|
17 |
+
# df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
18 |
+
# df = df[cols].round(decimals=2)
|
19 |
+
df = df[cols]
|
20 |
|
21 |
# filter out if any of the benchmarks have not been produced
|
22 |
df = df[has_no_nan_values(df, benchmark_cols)]
|