sky24h's picture
add support to ZeroGPU
dab1483
import os
import PIL
import cv2
import time
import torch
import spaces
import numpy as np
import gradio as gr
from PIL import Image
from torch import autocast
from contextlib import nullcontext
from itertools import islice
from omegaconf import OmegaConf
from einops import rearrange, repeat
from pytorch_lightning import seed_everything
from ldm.util import instantiate_from_config
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from gradio_image_annotation import image_annotator
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
CONFIG_PATH = "./configs/stable-diffusion/v2-inference.yaml"
CKPT_PATH = "./ckpt/v2-1_512-ema-pruned.ckpt"
if not os.path.exists(CKPT_PATH):
# automatically download the checkpoint if it doesn't exist
print(f"Checkpoint {CKPT_PATH} not found, downloading from huggingface")
os.system(f"wget -O {CKPT_PATH} https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt")
CONFIG = OmegaConf.load(CONFIG_PATH)
def load_img(image, SCALE, pad=False, seg_map=False, target_size=None):
if seg_map:
# Load the input image and segmentation map
# image = Image.open(path).convert("RGB")
# seg_map = Image.open(seg).convert("1")
seg_map = seg_map.convert("1")
# Get the width and height of the original image
w, h = image.size
# Calculate the aspect ratio of the original image
aspect_ratio = h / w
# Determine the new dimensions for resizing the image while maintaining aspect ratio
if aspect_ratio > 1:
new_w = int(SCALE * 256 / aspect_ratio)
new_h = int(SCALE * 256)
else:
new_w = int(SCALE * 256)
new_h = int(SCALE * 256 * aspect_ratio)
# Resize the image and the segmentation map to the new dimensions
image_resize = image.resize((new_w, new_h))
segmentation_map_resize = cv2.resize(np.array(seg_map).astype(np.uint8), (new_w, new_h), interpolation=cv2.INTER_NEAREST)
# Pad the segmentation map to match the target size
padded_segmentation_map = np.zeros((target_size[1], target_size[0]))
start_x = (target_size[1] - segmentation_map_resize.shape[0]) // 2
start_y = (target_size[0] - segmentation_map_resize.shape[1]) // 2
padded_segmentation_map[start_x : start_x + segmentation_map_resize.shape[0], start_y : start_y + segmentation_map_resize.shape[1]] = (
segmentation_map_resize
)
# Create a new RGB image with the target size and place the resized image in the center
padded_image = Image.new("RGB", target_size)
start_x = (target_size[0] - image_resize.width) // 2
start_y = (target_size[1] - image_resize.height) // 2
padded_image.paste(image_resize, (start_x, start_y))
# Update the variable "image" to contain the final padded image
image = padded_image
else:
# image = Image.open(path).convert("RGB")
w, h = image.size
# print(f"loaded input image of size ({w}, {h}) from {path}")
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
w = h = 512
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
if pad or seg_map:
return 2.0 * image - 1.0, new_w, new_h, padded_segmentation_map
return 2.0 * image - 1.0, w, h
def load_model_and_get_prompt_embedding(model, scale, device, prompts, inv=False):
if inv:
inv_emb = model.get_learned_conditioning(prompts, inv)
c = uc = inv_emb
else:
inv_emb = None
if scale != 1.0:
uc = model.get_learned_conditioning([""])
else:
uc = None
c = model.get_learned_conditioning(prompts)
return c, uc, inv_emb
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, gpu, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location=gpu)
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.eval()
return model
MODEL = load_model_from_config(CONFIG, CKPT_PATH, DEVICE)
MODEL.to(device=DEVICE)
@spaces.GPU(duration=60)
def tficon(img_with_mask, ref_img, seg, prompt, dpm_order, dpm_steps, tau_a, tau_b, domain, seed, scale):
init_img = img_with_mask["image"]
n_samples = 1
precision = "autocast"
ddim_eta = 0.0
dpm_order = int(dpm_order[0])
scale = scale
device = DEVICE
model = MODEL
batch_size = n_samples
sampler = DPMSolverSampler(model)
seed_everything(seed)
# img = cv2.imread(mask, 0)
# # Threshold the image to create binary image
# _, binary = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# # Find the contours of the white region in the image
# contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# # Find the bounding rectangle of the largest contour
# x, y, new_w, new_h = cv2.boundingRect(contours[0])
# Calculate the center of the rectangle
bbox = img_with_mask["boxes"][0]
x = bbox["xmin"]
y = bbox["ymin"]
new_w = bbox["xmax"] - bbox["xmin"]
new_h = bbox["ymax"] - bbox["ymin"]
center_x = x + new_w / 2
center_y = y + new_h / 2
# Calculate the percentage from the top and left
center_row_from_top = round(center_y / 512, 2)
center_col_from_left = round(center_x / 512, 2)
aspect_ratio = new_h / new_w
if aspect_ratio > 1:
mask_scale = new_w * aspect_ratio / 256
mask_scale = new_h / 256
else:
mask_scale = new_w / 256
mask_scale = new_h / (aspect_ratio * 256)
# mask_scale = round(mask_scale, 2)
# =============================================================================================
data = [batch_size * [prompt]]
# read background image
init_image, target_width, target_height = load_img(init_img, mask_scale)
init_image = repeat(init_image.to(device), "1 ... -> b ...", b=batch_size)
save_image = init_image.clone()
# read foreground image and its segmentation map
ref_image, width, height, segmentation_map = load_img(ref_img, mask_scale, seg_map=seg, target_size=(target_width, target_height))
ref_image = repeat(ref_image.to(device), "1 ... -> b ...", b=batch_size)
segmentation_map_orig = repeat(torch.tensor(segmentation_map)[None, None, ...].to(device), "1 1 ... -> b 4 ...", b=batch_size)
segmentation_map_save = repeat(torch.tensor(segmentation_map)[None, None, ...].to(device), "1 1 ... -> b 3 ...", b=batch_size)
segmentation_map = segmentation_map_orig[:, :, ::8, ::8].to(device)
top_rr = int((0.5 * (target_height - height)) / target_height * init_image.shape[2]) # xx% from the top
bottom_rr = int((0.5 * (target_height + height)) / target_height * init_image.shape[2])
left_rr = int((0.5 * (target_width - width)) / target_width * init_image.shape[3]) # xx% from the left
right_rr = int((0.5 * (target_width + width)) / target_width * init_image.shape[3])
center_row_rm = int(center_row_from_top * target_height)
center_col_rm = int(center_col_from_left * target_width)
step_height2, remainder = divmod(height, 2)
step_height1 = step_height2 + remainder
step_width2, remainder = divmod(width, 2)
step_width1 = step_width2 + remainder
# compositing in pixel space for same-domain composition
save_image[:, :, center_row_rm - step_height1 : center_row_rm + step_height2, center_col_rm - step_width1 : center_col_rm + step_width2] = (
save_image[
:, :, center_row_rm - step_height1 : center_row_rm + step_height2, center_col_rm - step_width1 : center_col_rm + step_width2
].clone()
* (1 - segmentation_map_save[:, :, top_rr:bottom_rr, left_rr:right_rr])
+ ref_image[:, :, top_rr:bottom_rr, left_rr:right_rr].clone() * segmentation_map_save[:, :, top_rr:bottom_rr, left_rr:right_rr]
)
# save the mask and the pixel space composited image
save_mask = torch.zeros_like(init_image)
save_mask[:, :, center_row_rm - step_height1 : center_row_rm + step_height2, center_col_rm - step_width1 : center_col_rm + step_width2] = 1
# image = Image.fromarray(((save_image/torch.max(save_image.max(), abs(save_image.min())) + 1) * 127.5)[0].permute(1,2,0).to(dtype=torch.uint8).cpu().numpy())
precision_scope = autocast if precision == "autocast" else nullcontext
# image composition
with torch.no_grad():
with precision_scope("cuda"):
for prompts in data:
print(prompts)
c, uc, inv_emb = load_model_and_get_prompt_embedding(model, scale, device, prompts, inv=True)
if domain == "Real Domain": # same domain
init_image = save_image
T1 = time.time()
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image))
# ref's location in ref image in the latent space
top_rr = int((0.5 * (target_height - height)) / target_height * init_latent.shape[2])
bottom_rr = int((0.5 * (target_height + height)) / target_height * init_latent.shape[2])
left_rr = int((0.5 * (target_width - width)) / target_width * init_latent.shape[3])
right_rr = int((0.5 * (target_width + width)) / target_width * init_latent.shape[3])
new_height = bottom_rr - top_rr
new_width = right_rr - left_rr
step_height2, remainder = divmod(new_height, 2)
step_height1 = step_height2 + remainder
step_width2, remainder = divmod(new_width, 2)
step_width1 = step_width2 + remainder
center_row_rm = int(center_row_from_top * init_latent.shape[2])
center_col_rm = int(center_col_from_left * init_latent.shape[3])
param = [
max(0, int(center_row_rm - step_height1)),
min(init_latent.shape[2] - 1, int(center_row_rm + step_height2)),
max(0, int(center_col_rm - step_width1)),
min(init_latent.shape[3] - 1, int(center_col_rm + step_width2)),
]
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref_image))
shape = [init_latent.shape[1], init_latent.shape[2], init_latent.shape[3]]
z_enc, _ = sampler.sample(
steps = dpm_steps,
inv_emb = inv_emb,
unconditional_conditioning = uc,
conditioning = c,
batch_size = n_samples,
shape = shape,
verbose = False,
unconditional_guidance_scale = scale,
eta = ddim_eta,
order = dpm_order,
x_T = init_latent,
width = width,
height = height,
DPMencode = True,
)
z_ref_enc, _ = sampler.sample(
steps = dpm_steps,
inv_emb = inv_emb,
unconditional_conditioning = uc,
conditioning = c,
batch_size = n_samples,
shape = shape,
verbose = False,
unconditional_guidance_scale = scale,
eta = ddim_eta,
order = dpm_order,
x_T = ref_latent,
DPMencode = True,
width = width,
height = height,
ref = True,
)
samples_orig = z_enc.clone()
# inpainting in XOR region of M_seg and M_mask
z_enc[:, :, param[0] : param[1], param[2] : param[3]] = z_enc[
:, :, param[0] : param[1], param[2] : param[3]
] * segmentation_map[:, :, top_rr:bottom_rr, left_rr:right_rr] + torch.randn(
(1, 4, bottom_rr - top_rr, right_rr - left_rr), device=device
) * (1 - segmentation_map[:, :, top_rr:bottom_rr, left_rr:right_rr])
samples_for_cross = samples_orig.clone()
samples_ref = z_ref_enc.clone()
samples = z_enc.clone()
# noise composition
if domain == "Cross Domain":
samples[:, :, param[0] : param[1], param[2] : param[3]] = torch.randn(
(1, 4, bottom_rr - top_rr, right_rr - left_rr), device=device
)
# apply the segmentation mask on the noise
samples[:, :, param[0] : param[1], param[2] : param[3]] = (
samples[:, :, param[0] : param[1], param[2] : param[3]].clone()
* (1 - segmentation_map[:, :, top_rr:bottom_rr, left_rr:right_rr])
+ z_ref_enc[:, :, top_rr:bottom_rr, left_rr:right_rr].clone()
* segmentation_map[:, :, top_rr:bottom_rr, left_rr:right_rr]
)
mask = torch.zeros_like(z_enc, device=device)
mask[:, :, param[0] : param[1], param[2] : param[3]] = 1
samples, _ = sampler.sample(
steps = dpm_steps,
inv_emb = inv_emb,
conditioning = c,
batch_size = n_samples,
shape = shape,
verbose = False,
unconditional_guidance_scale = scale,
unconditional_conditioning = uc,
eta = ddim_eta,
order = dpm_order,
x_T = [samples_orig, samples.clone(), samples_for_cross, samples_ref, samples, init_latent],
width = width,
height = height,
segmentation_map = segmentation_map,
param = param,
mask = mask,
target_height = target_height,
target_width = target_width,
center_row_rm = center_row_from_top,
center_col_rm = center_col_from_left,
tau_a = tau_a,
tau_b = tau_b,
)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
T2 = time.time()
print("Running Time: %s s" % (T2 - T1))
for x_sample in x_samples:
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c")
img = Image.fromarray(x_sample.astype(np.uint8))
# img.save(os.path.join(sample_path, f"{base_count:05}_{prompts[0]}.png"))
return img
def read_content(file_path: str) -> str:
"""read the content of target file"""
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
return content
example = {}
ref_dir = "./gradio/foreground"
image_dir = "./gradio/background"
seg_dir = "./gradio/seg_foreground"
image_list = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
image_list.sort()
ref_list = [os.path.join(ref_dir, file) for file in os.listdir(ref_dir)]
ref_list.sort()
seg_list = [os.path.join(seg_dir, file) for file in os.listdir(seg_dir)]
seg_list.sort()
reference_list = [[ref_img, ref_mask] for ref_img, ref_mask in zip(ref_list, seg_list)]
image_list = [
{
"image": image,
"boxes": [
{
"xmin" : 128,
"ymin" : 128,
"xmax" : 384,
"ymax" : 384,
"label": "Mask",
"color": (250, 0, 0),
}
],
}
for image in image_list
]
def update_mask(image):
print("update mask")
bbox = image["boxes"][0]
label = image["boxes"][0]["label"]
xmin = bbox["xmin"]
ymin = bbox["ymin"]
xmax = bbox["xmax"]
ymax = bbox["ymax"]
coords = [xmin, ymin, xmax, ymax]
return (image["image"], [(coords, label)])
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 style="text-align: center; font-size: 32px; font-family: 'Times New Roman', Times, serif;">
🦄TF-ICON: Diffusion-Based Training-Free Cross-Domain Image Composition
</h1>
<p style="text-align: center; font-size: 20px; font-family: 'Times New Roman', Times, serif;">
<a style="text-align: center; display:inline-block"
href="https://shilin-lu.github.io/tf-icon.github.io/">
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/paper-page-sm.svg#center"
alt="Paper Page">
</a>
<a style="text-align: center; display:inline-block" href="https://huggingface.co/spaces/sky24h/TF-ICON-unofficial?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center" alt="Duplicate Space">
</a>
</p>
This is an unofficial demo for the paper 'TF-ICON: Diffusion-Based Training-Free Cross-Domain Image Composition'.
</p>
"""
)
with gr.Row():
with gr.Column():
# back_image_invisible = gr.Image(elem_id="image_upload", type="pil", label="Background Image", height=512, visible=False)
image = image_annotator(
None,
label_list=["Mask"],
label_colors=[(255, 0, 0)],
height=512,
image_type="pil",
)
# back_image_invisible.change(fn=set_image, inputs=[back_image_invisible, image])
mask_btn = gr.Button("Generate Mask")
reference = gr.Image(elem_id="image_upload", type="pil", label="Foreground Image", height=512)
with gr.Row():
# guidance = gr.Slider(label="Guidance scale", value=5, maximum=15,interactive=True)
steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1, interactive=True)
seed = gr.Slider(0, 10000, label="Seed (0 = random)", value=3407, step=1)
with gr.Row():
tau_a = gr.Slider(
label="tau_a",
value=0.4,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Foreground Attention Injection",
)
tau_b = gr.Slider(
label="tau_b", value=0.8, minimum=0.0, maximum=1.0, step=0.1, interactive=True, info="Background Preservation"
)
with gr.Row():
scale = gr.Slider(
label="CFG",
value=2.5,
minimum=0.0,
maximum=15.0,
step=0.5,
interactive=True,
info="CFG=2.5 for real domain CFG>=5.0 for cross domain",
)
dpm_order = gr.CheckboxGroup(["1", "2", "3"], value="2", label="DPM Solver Order")
domain = gr.Radio(
["Cross Domain", "Real Domain"],
value="Real Domain",
label="Domain",
info="When background is real image, choose Real Domain; otherwise, choose Cross Domain",
)
prompt = gr.Textbox(label="Prompt", info="an oil painting (or a pencil drawing) of a panda") # .style(height=512)
btn = gr.Button("Run!") #
with gr.Column():
mask = gr.AnnotatedImage(
label="Composition Region",
# info="Setting mask for composition region: first click for the top left corner, second click for the bottom right corner",
color_map={"Region for Composing Object": "#9987FF", "Click Second Point for Mask": "#f44336"},
height=512,
)
mask_btn.click(fn=update_mask, inputs=[image], outputs=[mask])
# image.select(get_select_coordinates, image, mask)
seg = gr.Image(elem_id="image_upload", type="pil", label="Segmentation Mask for Foreground", height=512)
image_out = gr.Image(label="Output", elem_id="output-img", height=512)
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=True)
# loading_icon = gr.HTML(loading_icon_html, visible=True)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row():
with gr.Column():
gr.Examples(image_list, inputs=[image], label="Examples - Background Image", examples_per_page=12)
with gr.Column():
gr.Examples(reference_list, inputs=[reference, seg], label="Examples - Foreground Image", examples_per_page=12)
btn.click(fn=tficon, inputs=[image, reference, seg, prompt, dpm_order, steps, tau_a, tau_b, domain, seed, scale], outputs=[image_out])
demo.queue(max_size=10).launch()