Raaniel commited on
Commit
c2e1efa
·
1 Parent(s): f00e438

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +175 -0
app.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code source: Gaël Varoquaux
2
+ # License: BSD 3 clause
3
+
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ from sklearn import svm
7
+ import gradio as gr
8
+ from matplotlib.colors import ListedColormap
9
+ plt.switch_backend("agg")
10
+
11
+ font1 = {'family':'DejaVu Sans','size':20}
12
+
13
+ def create_data(random, size_num, x_min, x_max, y_min, y_max):
14
+ #emulate some random data
15
+ if random:
16
+ size_num = int(size_num)
17
+ x = np.random.uniform(x_min, x_max, size=(size_num, 1))
18
+ y = np.random.uniform(y_min, y_max, size=(size_num, 1))
19
+
20
+ X = np.hstack((x, y))
21
+ Y = [0] * int(size_num/2) + [1] * int(size_num/2)
22
+ else:
23
+ X = np.c_[
24
+ (0.4, -0.7),
25
+ (-1.5, -1),
26
+ (-1.4, -0.9),
27
+ (-1.3, -1.2),
28
+ (-1.5, 0.2),
29
+ (-1.2, -0.4),
30
+ (-0.5, 1.2),
31
+ (-1.5, 2.1),
32
+ (1, 1),
33
+ # --
34
+ (1.3, 0.8),
35
+ (1.5, 0.5),
36
+ (0.2, -2),
37
+ (0.5, -2.4),
38
+ (0.2, -2.3),
39
+ (0, -2.7),
40
+ (1.3, 2.8),
41
+ ].T
42
+
43
+ Y = [0] * 8 + [1] * 8
44
+ return X, Y
45
+
46
+ # fit the model
47
+ def clf_kernel(color1, color2, dpi, size_num = None, x_min = None,
48
+ x_max = None, y_min = None,
49
+ y_max = None, random = False):
50
+
51
+ if size_num is not None or x_min is not None or x_max is not None or y_min is not None or y_max is not None:
52
+ random = True
53
+
54
+ X, Y = create_data(random, size_num, x_min, x_max, y_min, y_max)
55
+
56
+ kernels = ["linear", "poly", "rbf"]
57
+
58
+ # plot the line, the points, and the nearest vectors to the plane
59
+ fig, axs = plt.subplots(1,3, figsize = (16,8), facecolor='none', dpi = res[dpi])
60
+
61
+ cmap = ListedColormap([color1, color2], N=2, name = 'braincell')
62
+ for i, kernel in enumerate(kernels):
63
+ clf = svm.SVC(kernel=kernel, gamma=2)
64
+ clf.fit(X, Y)
65
+ axs[i].scatter(
66
+ clf.support_vectors_[:, 0],
67
+ clf.support_vectors_[:, 1],
68
+ s=80,
69
+ facecolors="none",
70
+ zorder=10,
71
+ edgecolors="k",
72
+ )
73
+ axs[i].scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=cmap, edgecolors="k")
74
+
75
+ axs[i].axis("tight")
76
+ x_min = -3
77
+ x_max = 3
78
+ y_min = -3
79
+ y_max = 3
80
+
81
+ XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
82
+ Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
83
+
84
+ # Put the result into a color plot
85
+ Z = Z.reshape(XX.shape)
86
+ axs[i].pcolormesh(XX, YY, Z > 0, cmap=cmap)
87
+ axs[i].contour(
88
+ XX,
89
+ YY,
90
+ Z,
91
+ colors=["k", "k", "k"],
92
+ linestyles=["--", "-", "--"],
93
+ levels=[-0.5, 0, 0.5],
94
+ )
95
+
96
+ axs[i].set_xlim(x_min, x_max)
97
+ axs[i].set_ylim(y_min, y_max)
98
+
99
+ axs[i].set_xticks(())
100
+ axs[i].set_yticks(())
101
+ axs[i].set_title('Type of kernel: ' + kernel,
102
+ color = "white", fontdict = font1, pad=20,
103
+ bbox=dict(boxstyle="round,pad=0.3",
104
+ color = "#6366F1"))
105
+
106
+ plt.close()
107
+ return fig, np.round(X, decimals=2)
108
+
109
+ intro = """<h1 style="text-align: center;">🤗 Introducing SVM-Kernels 🤗</h1>
110
+ """
111
+ desc = """<h3 style="text-align: center;">Three different types of SVM-Kernels are displayed below.
112
+ The polynomial and RBF are especially useful when the data-points are not linearly separable. </h3>
113
+ """
114
+ notice = """<br><div style = "text-align: left;"> <em>Notice: Run the model on example data or use <strong>Randomize data</strong>
115
+ button below to check out the model on randomized data-points. Any changes to visual parameters will reset the data!</em></div>"""
116
+
117
+ notice2 = """<br><div style = "text-align: left;"> <em>Notice: The data points are categorized into two distinct classes, and they are evenly distributed on the plots to visually represent these classes.</em></div>"""
118
+
119
+ made ="""<div style="text-align: center;">
120
+ <p>Made with ❤</p>"""
121
+
122
+ link = """<div style="text-align: center;">
123
+ <a href="https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py" target="_blank" rel="noopener noreferrer">
124
+ Demo is based on this script from scikit-learn documentation</a>"""
125
+
126
+ res = {'Small': 50, 'Medium': 75, 'Large': 100}
127
+
128
+ with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo",
129
+ secondary_hue="violet",
130
+ neutral_hue="slate",
131
+ font = gr.themes.GoogleFont("Inter")),
132
+ title="SVM-Kernels") as demo:
133
+
134
+ gr.HTML(intro)
135
+ gr.HTML(desc)
136
+
137
+ with gr.Tab("Plotted results"):
138
+ plot = gr.Plot(label="Kernel comparison:")
139
+ with gr.Tab("Data coordinates"):
140
+ gr.HTML(notice2)
141
+ X = gr.Numpy(headers = ['x','y'], interactive=False)
142
+
143
+ with gr.Column():
144
+
145
+ with gr.Accordion(label = 'Randomize data'):
146
+ gr.HTML(notice)
147
+ samples = gr.Slider(4, 16, value = 8, step = 2, label = "Number of samples:")
148
+ x_min = gr.Slider(-3, 0, value=-2, step=0.1, label="X Min:")
149
+ x_max = gr.Slider(0, 3, value=2, step=0.1, label="X Max:")
150
+ y_min = gr.Slider(-3, 0, value=-2, step=0.1, label="Y Min:")
151
+ y_max = gr.Slider(0, 3, value=2, step=0.1, label="Y Max:")
152
+ random = gr.Button("Randomize data")
153
+
154
+
155
+
156
+
157
+ with gr.Accordion(label = "Visual parameters"):
158
+ with gr.Row():
159
+ color1 = gr.ColorPicker(label = 'Pick color one:', value = '#9abfd8')
160
+ color2 = gr.ColorPicker(label = 'Pick color two:', value = '#371c4b')
161
+ #dpi = gr.Slider(50, 100, value = 75, step = 1, label = "Set the resolution: ")
162
+ dpi = gr.Radio(list(res.keys()), value = 'Medium', label = "Select the plot size:")
163
+
164
+ params2 = [color1, color2, dpi]
165
+
166
+ random.click(fn=clf_kernel, inputs=[color1, color2, dpi,samples, x_min, x_max, y_min, y_max], outputs=[plot,X])
167
+
168
+ for i in params2:
169
+ i.change(fn=clf_kernel, inputs=[color1, color2,dpi], outputs=[plot, X])
170
+
171
+ demo.load(fn=clf_kernel, inputs=[color1, color2, dpi], outputs=[plot,X])
172
+ gr.HTML(made)
173
+ gr.HTML(link)
174
+
175
+ demo.launch()