Raaniel commited on
Commit
f00e438
·
1 Parent(s): 5a5f0d2

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -145
app.py DELETED
@@ -1,145 +0,0 @@
1
- # Code source: Gaël Varoquaux
2
- # License: BSD 3 clause
3
-
4
- import numpy as np
5
- import matplotlib.pyplot as plt
6
- from sklearn import svm
7
- import gradio as gr
8
- plt.switch_backend("agg")
9
-
10
- kernels = ["linear", "poly", "rbf"]
11
-
12
- font1 = {'family':'DejaVu Sans','size':20}
13
-
14
- cmaps = {'Set1': plt.cm.Set1, 'Set2': plt.cm.Set2, 'Set3': plt.cm.Set3,
15
- 'tab10': plt.cm.tab10, 'tab20': plt.cm.tab20}
16
-
17
- # fit the model
18
- def clf_kernel(kernel, cmap, dpi = 300, use_random = False):
19
-
20
- #example data
21
- if use_random == False:
22
- X = np.c_[
23
- (0.4, -0.7),
24
- (-1.5, -1),
25
- (-1.4, -0.9),
26
- (-1.3, -1.2),
27
- (-1.5, 0.2),
28
- (-1.2, -0.4),
29
- (-0.5, 1.2),
30
- (-1.5, 2.1),
31
- (1, 1),
32
- # --
33
- (1.3, 0.8),
34
- (1.5, 0.5),
35
- (0.2, -2),
36
- (0.5, -2.4),
37
- (0.2, -2.3),
38
- (0, -2.7),
39
- (1.3, 2.8),
40
- ].T
41
- else:
42
- #emulate some random data
43
- x = np.random.uniform(-2, 2, size=(16, 1))
44
- y = np.random.uniform(-2, 2, size=(16, 1))
45
- X = np.hstack((x, y))
46
-
47
- Y = [0] * 8 + [1] * 8
48
-
49
- clf = svm.SVC(kernel=kernel, gamma=2)
50
- clf.fit(X, Y)
51
-
52
- # plot the line, the points, and the nearest vectors to the plane
53
- fig= plt.figure(figsize=(10, 6), facecolor = 'none',
54
- frameon = False, dpi = dpi)
55
- ax = fig.add_subplot(111)
56
-
57
- ax.scatter(
58
- clf.support_vectors_[:, 0],
59
- clf.support_vectors_[:, 1],
60
- s=80,
61
- facecolors="none",
62
- zorder=10,
63
- edgecolors="k",
64
- )
65
- ax.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=cmap, edgecolors="k")
66
-
67
- ax.axis("tight")
68
- x_min = -3
69
- x_max = 3
70
- y_min = -3
71
- y_max = 3
72
-
73
- XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
74
- Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
75
-
76
- # Put the result into a color plot
77
- Z = Z.reshape(XX.shape)
78
- ax.pcolormesh(XX, YY, Z > 0, cmap=cmap)
79
- ax.contour(
80
- XX,
81
- YY,
82
- Z,
83
- colors=["k", "k", "k"],
84
- linestyles=["--", "-", "--"],
85
- levels=[-0.5, 0, 0.5],
86
- )
87
-
88
- ax.set_xlim(x_min, x_max)
89
- ax.set_ylim(y_min, y_max)
90
-
91
- ax.set_xticks(())
92
- ax.set_yticks(())
93
- ax.set_title('Type of kernel: ' + kernel,
94
- color = "white", fontdict = font1, pad=20,
95
- bbox=dict(boxstyle="round,pad=0.3",
96
- color = "#6366F1"))
97
-
98
- plt.close()
99
- return fig
100
-
101
- intro = """<h1 style="text-align: center;">🤗 Introducing SVM-Kernels 🤗</h1>
102
- """
103
- desc = """<h3 style="text-align: center;">Three different types of SVM-Kernels are displayed below.
104
- The polynomial and RBF are especially useful when the data-points are not linearly separable. </h3>
105
- """
106
- notice = """<div style = "text-align: left;"> <em>Notice: Run the model on example data or press
107
- <strong>Randomize data</strong> button to check out the model on emulated data-points.</em></div>"""
108
-
109
- made ="""<div style="text-align: center;">
110
- <p>Made with ❤</p>"""
111
-
112
- link = """<div style="text-align: center;">
113
- <a href="https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py" target="_blank" rel="noopener noreferrer">
114
- Demo is based on this script from scikit-learn documentation</a>"""
115
-
116
- with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo",
117
- secondary_hue="violet",
118
- neutral_hue="slate",
119
- font = gr.themes.GoogleFont("Inter")),
120
- title="SVM-Kernels") as demo:
121
-
122
- gr.HTML(intro)
123
- gr.HTML(desc)
124
- with gr.Column():
125
- kernel = gr.Radio(kernels, label="Select kernel:",
126
- show_label = True, value = 'linear')
127
- plot = gr.Plot(label="Plot")
128
-
129
- with gr.Accordion(label = "More options", open = True):
130
- cmap = gr.Radio(['Set1', 'Set2', 'Set3', 'tab10', 'tab20'], label="Choose color map: ", value = 'Set2')
131
- dpi = gr.Slider(50, 150, value = 75, step = 1, label = "Set the resolution: ")
132
- gr.HTML(notice)
133
- random = gr.Button("Randomize data").style(full_width = False)
134
-
135
- cmap.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
136
- dpi.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
137
- kernel.change(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
138
-
139
- random.click(fn=clf_kernel, inputs=[kernel,cmap,dpi,random], outputs=plot)
140
-
141
- demo.load(fn=clf_kernel, inputs=[kernel,cmap,dpi], outputs=plot)
142
- gr.HTML(made)
143
- gr.HTML(link)
144
-
145
- demo.launch()