cartpole-demo / cartpole.py
skar0's picture
Changed git commands over to Hugging Face
d6a6bab
raw
history blame
22.4 kB
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.14.5
# kernelspec:
# display_name: Python 3
# name: python3
# ---
# + id="QAY_RQOLcRtA" executionInfo={"status": "ok", "timestamp": 1677945244865, "user_tz": 0, "elapsed": 19712, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="be179435-1667-40af-8a80-7bc63a472715"
MAIN = __name__ == "__main__"
if MAIN:
print('Mounting drive...')
from google.colab import drive
drive.mount('/content/drive')
# %cd /content/drive/MyDrive/Colab Notebooks/cartpole-demo
# + colab={"base_uri": "https://localhost:8080/"} id="GgSNZRJh4EjV" executionInfo={"status": "ok", "timestamp": 1677945316689, "user_tz": 0, "elapsed": 57846, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="6aeb7bf3-e186-449d-cdc4-c66f778244b2"
# !pip install einops
# !pip install wandb
# !pip install jupytext
# !pip install pygame
# !pip install torchtyping
# !pip install gradio
# !pip install huggingface_hub
# + colab={"base_uri": "https://localhost:8080/"} id="1g58HZUb8Ltl" executionInfo={"status": "ok", "timestamp": 1677945458077, "user_tz": 0, "elapsed": 16862, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="62ffc9cd-ff0b-4473-c17a-4593a14526cf"
# !git config --global credential.helper store
# !git config --global user.name "skar0"
# !git config --global user.email "oskar.hollinsworth@gmail.com"
# !huggingface-cli login
# !jupytext --to py cartpole.ipynb
# !git fetch
# # !chmod +x .git/hooks/pre-push
# !git status
# + id="dYeFdxVIWOqc" executionInfo={"status": "ok", "timestamp": 1677945546175, "user_tz": 0, "elapsed": 318, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}}
# + colab={"base_uri": "https://localhost:8080/"} id="5xFqBnKzVN60" executionInfo={"status": "ok", "timestamp": 1677945556589, "user_tz": 0, "elapsed": 7558, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="535e6c5e-17f6-4342-8a9d-ff54f4c82187"
# !git push
# + id="vEczQ48wC40O"
import os
import glob
import sys
import argparse
import random
import time
from distutils.util import strtobool
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch as t
from torchtyping import TensorType as TT
from typeguard import typechecked
import gym
import torch.nn as nn
import torch.optim as optim
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter
from gym.spaces import Discrete
from typing import Any, List, Optional, Union, Tuple, Iterable
from einops import rearrange
import importlib
import wandb
from typeguard import typechecked
# + id="K7T8bs1Y76ZK" executionInfo={"status": "ok", "timestamp": 1677942330521, "user_tz": 0, "elapsed": 8, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="f59ffef0-7156-4f27-d992-a392d59a1c73"
# %env "WANDB_NOTEBOOK_NAME" "cartpole.py"
# + id="Q5E93-BGRjuy"
def make_env(
env_id: str, seed: int, idx: int, capture_video: bool, run_name: str
):
"""
Return a function that returns an environment after setting up boilerplate.
"""
def thunk():
env = gym.make(env_id, new_step_api=True)
env = gym.wrappers.RecordEpisodeStatistics(env)
if capture_video:
if idx == 0:
# Video every 50 runs for env #1
env = gym.wrappers.RecordVideo(
env,
f"videos/{run_name}",
episode_trigger=lambda x : x % 50 == 0
)
obs = env.reset(seed=seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
return thunk
# + id="Kf152ROwHjM_"
def test_minibatch_indexes(minibatch_indexes):
for n in range(5):
frac, minibatch_size = np.random.randint(1, 8, size=(2,))
batch_size = frac * minibatch_size
indices = minibatch_indexes(batch_size, minibatch_size)
assert any([isinstance(indices, list), isinstance(indices, np.ndarray)])
assert isinstance(indices[0], np.ndarray)
assert len(indices) == frac
np.testing.assert_equal(np.sort(np.stack(indices).flatten()), np.arange(batch_size))
# + id="mhvduVeOHkln"
def test_calc_entropy_bonus(calc_entropy_bonus):
probs = Categorical(logits=t.randn((3, 4)))
ent_coef = 0.5
expected = ent_coef * probs.entropy().mean()
actual = calc_entropy_bonus(probs, ent_coef)
t.testing.assert_close(expected, actual)
# + id="Aya60GeCGA5X"
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
t.nn.init.orthogonal_(layer.weight, std)
t.nn.init.constant_(layer.bias, bias_const)
return layer
class Agent(nn.Module):
critic: nn.Sequential
actor: nn.Sequential
def __init__(self, envs: gym.vector.SyncVectorEnv):
super().__init__()
obs_shape = np.array(
(envs.num_envs, ) + envs.single_action_space.shape
).prod().astype(int)
self.actor = nn.Sequential(
layer_init(nn.Linear(obs_shape, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, envs.single_action_space.n), std=.01),
)
self.critic = nn.Sequential(
layer_init(nn.Linear(obs_shape, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 64)),
nn.Tanh(),
layer_init(nn.Linear(64, 1), std=1),
)
# + id="6PwPZHlLGDYu"
# %%
@t.inference_mode()
def compute_advantages(
next_value: t.Tensor,
next_done: t.Tensor,
rewards: t.Tensor,
values: t.Tensor,
dones: t.Tensor,
device: t.device,
gamma: float,
gae_lambda: float,
) -> t.Tensor:
'''Compute advantages using Generalized Advantage Estimation.
next_value: shape (1, env) -
represents V(s_{t+1}) which is needed for the last advantage term
next_done: shape (env,)
rewards: shape (t, env)
values: shape (t, env)
dones: shape (t, env)
Return: shape (t, env)
'''
assert isinstance(next_value, t.Tensor)
assert isinstance(next_done, t.Tensor)
assert isinstance(rewards, t.Tensor)
assert isinstance(values, t.Tensor)
assert isinstance(dones, t.Tensor)
t_max, n_env = values.shape
next_values = t.concat((values[1:, ], next_value))
next_dones = t.concat((dones[1:, ], next_done.unsqueeze(0)))
deltas = rewards + gamma * next_values * (1.0 - next_dones) - values
adv = deltas.clone().to(device)
for to_go in range(1, t_max):
t_idx = t_max - to_go - 1
t.testing.assert_close(adv[t_idx], deltas[t_idx])
adv[t_idx] += (
gamma * gae_lambda * adv[t_idx + 1] * (1.0 - next_dones[t_idx])
)
return adv
# + id="uYSSMnF-GPvm"
# %%
@dataclass
class Minibatch:
obs: t.Tensor
logprobs: t.Tensor
actions: t.Tensor
advantages: t.Tensor
returns: t.Tensor
values: t.Tensor
def minibatch_indexes(
batch_size: int, minibatch_size: int
) -> List[np.ndarray]:
'''
Return a list of length (batch_size // minibatch_size) where
each element is an array of indexes into the batch.
Each index should appear exactly once.
'''
assert batch_size % minibatch_size == 0
n = batch_size // minibatch_size
indices = np.arange(batch_size)
np.random.shuffle(indices)
return [indices[i::n] for i in range(n)]
if MAIN:
test_minibatch_indexes(minibatch_indexes)
def make_minibatches(
obs: t.Tensor,
logprobs: t.Tensor,
actions: t.Tensor,
advantages: t.Tensor,
values: t.Tensor,
obs_shape: tuple,
action_shape: tuple,
batch_size: int,
minibatch_size: int,
) -> List[Minibatch]:
'''
Flatten the environment and steps dimension into one batch dimension,
then shuffle and split into minibatches.
'''
n_steps, n_env = values.shape
n_dim = n_steps * n_env
indexes = minibatch_indexes(batch_size=batch_size, minibatch_size=minibatch_size)
obs_flat = obs.reshape((batch_size,) + obs_shape)
act_flat = actions.reshape((batch_size,) + action_shape)
probs_flat = logprobs.reshape((batch_size,) + action_shape)
adv_flat = advantages.reshape(n_dim)
val_flat = values.reshape(n_dim)
return [
Minibatch(
obs_flat[idx], probs_flat[idx], act_flat[idx], adv_flat[idx],
adv_flat[idx] + val_flat[idx], val_flat[idx]
)
for idx in indexes
]
# + id="K7wXDJ9MGOWu"
# %%
def calc_policy_loss(
probs: Categorical, mb_action: t.Tensor, mb_advantages: t.Tensor,
mb_logprobs: t.Tensor, clip_coef: float
) -> t.Tensor:
'''
Return the policy loss, suitable for maximisation with gradient ascent.
probs:
a distribution containing the actor's unnormalized logits of
shape (minibatch, num_actions)
clip_coef: amount of clipping, denoted by epsilon in Eq 7.
normalize: if true, normalize mb_advantages to have mean 0, variance 1
'''
adv_norm = (mb_advantages - mb_advantages.mean()) / mb_advantages.std()
ratio = t.exp(probs.log_prob(mb_action)) / t.exp(mb_logprobs)
min_left = ratio * adv_norm
min_right = t.clip(ratio, 1 - clip_coef, 1 + clip_coef) * adv_norm
return t.minimum(min_left, min_right).mean()
# + id="CmyxU6JWGMsG"
# %%
def calc_value_function_loss(
critic: nn.Sequential, mb_obs: t.Tensor, mb_returns: t.Tensor, v_coef: float
) -> t.Tensor:
'''Compute the value function portion of the loss function.
Need to minimise this
v_coef:
the coefficient for the value loss, which weights its contribution to
the overall loss. Denoted by c_1 in the paper.
'''
output = critic(mb_obs)
return v_coef * (output - mb_returns).pow(2).mean() / 2
# + id="npyWs6xjGLkP"
# %%
def calc_entropy_loss(probs: Categorical, ent_coef: float):
'''Return the entropy loss term.
Need to maximise this
ent_coef:
The coefficient for the entropy loss, which weights its contribution to the overall loss.
Denoted by c_2 in the paper.
'''
return probs.entropy().mean() * ent_coef
if MAIN:
test_calc_entropy_bonus(calc_entropy_loss)
# + id="nqJeg1kZGKSG"
# %%
class PPOScheduler:
def __init__(self, optimizer: optim.Adam, initial_lr: float, end_lr: float, num_updates: int):
self.optimizer = optimizer
self.initial_lr = initial_lr
self.end_lr = end_lr
self.num_updates = num_updates
self.n_step_calls = 0
def step(self):
'''
Implement linear learning rate decay so that after num_updates calls to step,
the learning rate is end_lr.
'''
lr = (
self.initial_lr +
(self.end_lr - self.initial_lr) * self.n_step_calls / self.num_updates
)
for param in self.optimizer.param_groups:
param['lr'] = lr
self.n_step_calls += 1
def make_optimizer(
agent: Agent, num_updates: int, initial_lr: float, end_lr: float
) -> Tuple[optim.Adam, PPOScheduler]:
'''Return an appropriately configured Adam with its attached scheduler.'''
optimizer = optim.Adam(agent.parameters(), lr=initial_lr, maximize=True)
scheduler = PPOScheduler(
optimizer=optimizer, initial_lr=initial_lr, end_lr=end_lr, num_updates=num_updates
)
return optimizer, scheduler
# + id="mgZ7-wsRCxJW"
@dataclass
class PPOArgs:
exp_name: str = 'cartpole.py'
seed: int = 1
torch_deterministic: bool = True
cuda: bool = True
track: bool = True
wandb_project_name: str = "PPOCart"
wandb_entity: str = None
capture_video: bool = True
env_id: str = "CartPole-v1"
total_timesteps: int = 40_000
learning_rate: float = 0.00025
num_envs: int = 4
num_steps: int = 128
gamma: float = 0.99
gae_lambda: float = 0.95
num_minibatches: int = 4
update_epochs: int = 4
clip_coef: float = 0.2
ent_coef: float = 0.01
vf_coef: float = 0.5
max_grad_norm: float = 0.5
batch_size: int = 512
minibatch_size: int = 128
# + id="xeIu-J3ZwGyq"
def wandb_init(name: str, args: PPOArgs):
wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name=name,
monitor_gym=True,
save_code=True,
settings=wandb.Settings(symlink=False)
)
# + id="gMYWqhsryYHy"
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# + id="T9j_L0Wpyrgz"
@typechecked
def rollout_phase(
next_obs: t.Tensor, next_done: t.Tensor,
agent: Agent, envs: gym.vector.SyncVectorEnv,
writer: SummaryWriter, device: torch.device,
global_step: int, action_shape: Tuple,
num_envs: int, num_steps: int,
) -> Tuple[
TT['envs'],
TT['envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
TT['steps', 'envs'],
]:
'''
Output:
next_obs, next_done, actions, dones, logprobs, obs, rewards, values
'''
obs = torch.zeros(
(num_steps, num_envs) +
envs.single_observation_space.shape
).to(device)
actions = torch.zeros(
(num_steps, num_envs) +
action_shape
).to(device)
logprobs = torch.zeros((num_steps, num_envs)).to(device)
rewards = torch.zeros((num_steps, num_envs)).to(device)
dones = torch.zeros((num_steps, num_envs)).to(device)
values = torch.zeros((num_steps, num_envs)).to(device)
for i in range(0, num_steps):
# Rollout phase
global_step += 1
curr_obs = next_obs
done = next_done
with t.inference_mode():
logits = agent.actor(curr_obs).detach()
q_values = agent.critic(curr_obs).detach().squeeze(-1)
prob = Categorical(logits=logits)
action = prob.sample()
logprob = prob.log_prob(action)
next_obs, reward, next_done, info = envs.step(action.numpy())
next_obs = t.tensor(next_obs, device=device)
next_done = t.tensor(next_done, device=device)
actions[i] = action
dones[i] = done.detach().clone()
logprobs[i] = logprob
obs[i] = curr_obs
rewards[i] = t.tensor(reward, device=device)
values[i] = q_values
if writer is not None and "episode" in info.keys():
for item in info['episode']:
if item is None or 'r' not in item.keys():
continue
writer.add_scalar(
"charts/episodic_return", item["r"], global_step
)
writer.add_scalar(
"charts/episodic_length", item["l"], global_step
)
if global_step % 10 != 0:
continue
print(
f"global_step={global_step}, episodic_return={item['r']}"
)
print("charts/episodic_return", item["r"], global_step)
print("charts/episodic_length", item["l"], global_step)
return (
next_obs, next_done, actions, dones, logprobs, obs, rewards, values
)
# + id="xdDhABIk5jyb"
def reset_env(envs, device):
next_obs = torch.Tensor(envs.reset()).to(device)
next_done = torch.zeros(envs.num_envs).to(device)
return next_obs, next_done
# + id="5CoMpUVU7rFT"
def get_action_shape(envs: gym.vector.SyncVectorEnv):
action_shape = envs.single_action_space.shape
assert action_shape is not None
assert isinstance(
envs.single_action_space, Discrete
), "only discrete action space is supported"
return action_shape
# + id="FHmn5kSUGFFu"
# %%
def train_ppo(args: PPOArgs):
t0 = int(time.time())
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{t0}"
if args.track:
wandb_init(run_name, args)
log_dir = wandb.run.dir
writer = SummaryWriter(log_dir)
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % "\n".join([f"|{key}|{value}|"
for (key, value) in vars(args).items()]),
)
set_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device(
"cuda" if torch.cuda.is_available() and args.cuda else "cpu"
)
envs = gym.vector.SyncVectorEnv([
make_env(args.env_id, args.seed + i, i, args.capture_video, run_name)
for i in range(args.num_envs)
])
agent = Agent(envs).to(device)
num_updates = args.total_timesteps // args.batch_size
(optimizer, scheduler) = make_optimizer(
agent, num_updates, args.learning_rate, 0.0
)
global_step = 0
old_approx_kl = 0.0
approx_kl = 0.0
value_loss = t.tensor(0.0)
policy_loss = t.tensor(0.0)
entropy_loss = t.tensor(0.0)
clipfracs = []
info = []
action_shape = get_action_shape(envs)
next_obs, next_done = reset_env(envs, device)
start_time = time.time()
for _ in range(num_updates):
rp = rollout_phase(
next_obs, next_done, agent, envs, writer, device, global_step,
action_shape, args.num_envs, args.num_steps,
)
next_obs, next_done, actions, dones, logprobs, obs, rewards, values = rp
with t.inference_mode():
next_value = rearrange(agent.critic(next_obs), "env 1 -> 1 env")
advantages = compute_advantages(
next_value, next_done, rewards, values, dones, device, args.gamma,
args.gae_lambda
)
clipfracs.clear()
mb: Minibatch
for _ in range(args.update_epochs):
minibatches = make_minibatches(
obs,
logprobs,
actions,
advantages,
values,
envs.single_observation_space.shape,
action_shape,
args.batch_size,
args.minibatch_size,
)
for mb in minibatches:
probs = Categorical(logits=agent.actor(mb.obs))
value_loss = calc_value_function_loss(
agent.critic, mb.obs, mb.returns, args.vf_coef
)
policy_loss = calc_policy_loss(
probs, mb.actions, mb.advantages, mb.logprobs,
args.clip_coef
)
entropy_loss = calc_entropy_loss(probs, args.ent_coef)
loss = policy_loss + entropy_loss - value_loss
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
(y_pred, y_true) = (mb.values.cpu().numpy(), mb.returns.cpu().numpy())
var_y = np.var(y_true)
explained_var = (
np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
)
with torch.no_grad():
newlogprob: t.Tensor = probs.log_prob(mb.actions)
logratio = newlogprob - mb.logprobs
ratio = logratio.exp()
old_approx_kl = (-logratio).mean().item()
approx_kl = (ratio - 1 - logratio).mean().item()
clipfracs += [
((ratio - 1.0).abs() > args.clip_coef).float().mean().item()
]
writer.add_scalar(
"charts/learning_rate", optimizer.param_groups[0]["lr"],
global_step
)
writer.add_scalar("losses/value_loss", value_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", policy_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl, global_step)
writer.add_scalar("losses/approx_kl", approx_kl, global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar(
"losses/explained_variance", explained_var, global_step
)
writer.add_scalar(
"charts/SPS",
int(global_step / (time.time() - start_time)),
global_step
)
if global_step % 1000 == 0:
print(
"steps per second (SPS):",
int(global_step / (time.time() - start_time))
)
print("losses/value_loss", value_loss.item())
print("losses/policy_loss", policy_loss.item())
print("losses/entropy", entropy_loss.item())
print(f'... training complete after {global_step} steps')
envs.close()
writer.close()
if args.track:
model_path = f'{wandb.run.dir}/model_state_dict.pt'
print(f'Saving model to {model_path}')
t.save(agent.state_dict(), model_path)
wandb.finish()
print('...wandb finished.')
# + id="-oZHTffJZP17" executionInfo={"status": "ok", "timestamp": 1677942433344, "user_tz": 0, "elapsed": 66678, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": ["c966d31ee30d43e0a8cc269a8a22b717", "294a378e56c44e4c9a3c58e8bf5b5f62", "473cc94ea22746f3a51e2186d973f741", "e3bb8c5a2c3841c2b33a7b8afb66a88f", "6133d8cbba964b7e8755e1c0691caf27", "1bf18f5fae9c4f58b2e360bc35251a94", "e820d38826494e248ca8974cccc1f338", "05eebe964b4b4c93b4aa0eac9ff865cb"]} outputId="0cfbb11c-831a-4622-8c01-afebae209d04"
# #%%wandb
if MAIN:
args = PPOArgs()
train_ppo(args)
# + colab={"base_uri": "https://localhost:8080/"} id="xJW6KL7QIj4s" executionInfo={"status": "ok", "timestamp": 1677942639015, "user_tz": 0, "elapsed": 105286, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="7c529849-6d46-4a6a-def5-e1c0ef652c64"
# !python demo.py
# + id="P7ZfUlAqImIr"
# !pip freeze > requirements.txt
# + id="x_bhyL3GLnhr"