Spaces:
Runtime error
Runtime error
# --- | |
# jupyter: | |
# jupytext: | |
# text_representation: | |
# extension: .py | |
# format_name: light | |
# format_version: '1.5' | |
# jupytext_version: 1.14.5 | |
# kernelspec: | |
# display_name: Python 3 | |
# name: python3 | |
# --- | |
# + id="QAY_RQOLcRtA" executionInfo={"status": "ok", "timestamp": 1677945244865, "user_tz": 0, "elapsed": 19712, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="be179435-1667-40af-8a80-7bc63a472715" | |
MAIN = __name__ == "__main__" | |
if MAIN: | |
print('Mounting drive...') | |
from google.colab import drive | |
drive.mount('/content/drive') | |
# %cd /content/drive/MyDrive/Colab Notebooks/cartpole-demo | |
# + colab={"base_uri": "https://localhost:8080/"} id="GgSNZRJh4EjV" executionInfo={"status": "ok", "timestamp": 1677945316689, "user_tz": 0, "elapsed": 57846, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="6aeb7bf3-e186-449d-cdc4-c66f778244b2" | |
# !pip install einops | |
# !pip install wandb | |
# !pip install jupytext | |
# !pip install pygame | |
# !pip install torchtyping | |
# !pip install gradio | |
# !pip install huggingface_hub | |
# + colab={"base_uri": "https://localhost:8080/"} id="1g58HZUb8Ltl" executionInfo={"status": "ok", "timestamp": 1677945458077, "user_tz": 0, "elapsed": 16862, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="62ffc9cd-ff0b-4473-c17a-4593a14526cf" | |
# !git config --global credential.helper store | |
# !git config --global user.name "skar0" | |
# !git config --global user.email "oskar.hollinsworth@gmail.com" | |
# !huggingface-cli login | |
# !jupytext --to py cartpole.ipynb | |
# !git fetch | |
# # !chmod +x .git/hooks/pre-push | |
# !git status | |
# + id="dYeFdxVIWOqc" executionInfo={"status": "ok", "timestamp": 1677945546175, "user_tz": 0, "elapsed": 318, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} | |
# + colab={"base_uri": "https://localhost:8080/"} id="5xFqBnKzVN60" executionInfo={"status": "ok", "timestamp": 1677945556589, "user_tz": 0, "elapsed": 7558, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="535e6c5e-17f6-4342-8a9d-ff54f4c82187" | |
# !git push | |
# + id="vEczQ48wC40O" | |
import os | |
import glob | |
import sys | |
import argparse | |
import random | |
import time | |
from distutils.util import strtobool | |
from dataclasses import dataclass | |
from typing import Optional | |
import numpy as np | |
import torch | |
import torch as t | |
from torchtyping import TensorType as TT | |
from typeguard import typechecked | |
import gym | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.distributions.categorical import Categorical | |
from torch.utils.tensorboard import SummaryWriter | |
from gym.spaces import Discrete | |
from typing import Any, List, Optional, Union, Tuple, Iterable | |
from einops import rearrange | |
import importlib | |
import wandb | |
from typeguard import typechecked | |
# + id="K7T8bs1Y76ZK" executionInfo={"status": "ok", "timestamp": 1677942330521, "user_tz": 0, "elapsed": 8, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/"} outputId="f59ffef0-7156-4f27-d992-a392d59a1c73" | |
# %env "WANDB_NOTEBOOK_NAME" "cartpole.py" | |
# + id="Q5E93-BGRjuy" | |
def make_env( | |
env_id: str, seed: int, idx: int, capture_video: bool, run_name: str | |
): | |
""" | |
Return a function that returns an environment after setting up boilerplate. | |
""" | |
def thunk(): | |
env = gym.make(env_id, new_step_api=True) | |
env = gym.wrappers.RecordEpisodeStatistics(env) | |
if capture_video: | |
if idx == 0: | |
# Video every 50 runs for env #1 | |
env = gym.wrappers.RecordVideo( | |
env, | |
f"videos/{run_name}", | |
episode_trigger=lambda x : x % 50 == 0 | |
) | |
obs = env.reset(seed=seed) | |
env.action_space.seed(seed) | |
env.observation_space.seed(seed) | |
return env | |
return thunk | |
# + id="Kf152ROwHjM_" | |
def test_minibatch_indexes(minibatch_indexes): | |
for n in range(5): | |
frac, minibatch_size = np.random.randint(1, 8, size=(2,)) | |
batch_size = frac * minibatch_size | |
indices = minibatch_indexes(batch_size, minibatch_size) | |
assert any([isinstance(indices, list), isinstance(indices, np.ndarray)]) | |
assert isinstance(indices[0], np.ndarray) | |
assert len(indices) == frac | |
np.testing.assert_equal(np.sort(np.stack(indices).flatten()), np.arange(batch_size)) | |
# + id="mhvduVeOHkln" | |
def test_calc_entropy_bonus(calc_entropy_bonus): | |
probs = Categorical(logits=t.randn((3, 4))) | |
ent_coef = 0.5 | |
expected = ent_coef * probs.entropy().mean() | |
actual = calc_entropy_bonus(probs, ent_coef) | |
t.testing.assert_close(expected, actual) | |
# + id="Aya60GeCGA5X" | |
def layer_init(layer, std=np.sqrt(2), bias_const=0.0): | |
t.nn.init.orthogonal_(layer.weight, std) | |
t.nn.init.constant_(layer.bias, bias_const) | |
return layer | |
class Agent(nn.Module): | |
critic: nn.Sequential | |
actor: nn.Sequential | |
def __init__(self, envs: gym.vector.SyncVectorEnv): | |
super().__init__() | |
obs_shape = np.array( | |
(envs.num_envs, ) + envs.single_action_space.shape | |
).prod().astype(int) | |
self.actor = nn.Sequential( | |
layer_init(nn.Linear(obs_shape, 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, envs.single_action_space.n), std=.01), | |
) | |
self.critic = nn.Sequential( | |
layer_init(nn.Linear(obs_shape, 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 64)), | |
nn.Tanh(), | |
layer_init(nn.Linear(64, 1), std=1), | |
) | |
# + id="6PwPZHlLGDYu" | |
# %% | |
def compute_advantages( | |
next_value: t.Tensor, | |
next_done: t.Tensor, | |
rewards: t.Tensor, | |
values: t.Tensor, | |
dones: t.Tensor, | |
device: t.device, | |
gamma: float, | |
gae_lambda: float, | |
) -> t.Tensor: | |
'''Compute advantages using Generalized Advantage Estimation. | |
next_value: shape (1, env) - | |
represents V(s_{t+1}) which is needed for the last advantage term | |
next_done: shape (env,) | |
rewards: shape (t, env) | |
values: shape (t, env) | |
dones: shape (t, env) | |
Return: shape (t, env) | |
''' | |
assert isinstance(next_value, t.Tensor) | |
assert isinstance(next_done, t.Tensor) | |
assert isinstance(rewards, t.Tensor) | |
assert isinstance(values, t.Tensor) | |
assert isinstance(dones, t.Tensor) | |
t_max, n_env = values.shape | |
next_values = t.concat((values[1:, ], next_value)) | |
next_dones = t.concat((dones[1:, ], next_done.unsqueeze(0))) | |
deltas = rewards + gamma * next_values * (1.0 - next_dones) - values | |
adv = deltas.clone().to(device) | |
for to_go in range(1, t_max): | |
t_idx = t_max - to_go - 1 | |
t.testing.assert_close(adv[t_idx], deltas[t_idx]) | |
adv[t_idx] += ( | |
gamma * gae_lambda * adv[t_idx + 1] * (1.0 - next_dones[t_idx]) | |
) | |
return adv | |
# + id="uYSSMnF-GPvm" | |
# %% | |
class Minibatch: | |
obs: t.Tensor | |
logprobs: t.Tensor | |
actions: t.Tensor | |
advantages: t.Tensor | |
returns: t.Tensor | |
values: t.Tensor | |
def minibatch_indexes( | |
batch_size: int, minibatch_size: int | |
) -> List[np.ndarray]: | |
''' | |
Return a list of length (batch_size // minibatch_size) where | |
each element is an array of indexes into the batch. | |
Each index should appear exactly once. | |
''' | |
assert batch_size % minibatch_size == 0 | |
n = batch_size // minibatch_size | |
indices = np.arange(batch_size) | |
np.random.shuffle(indices) | |
return [indices[i::n] for i in range(n)] | |
if MAIN: | |
test_minibatch_indexes(minibatch_indexes) | |
def make_minibatches( | |
obs: t.Tensor, | |
logprobs: t.Tensor, | |
actions: t.Tensor, | |
advantages: t.Tensor, | |
values: t.Tensor, | |
obs_shape: tuple, | |
action_shape: tuple, | |
batch_size: int, | |
minibatch_size: int, | |
) -> List[Minibatch]: | |
''' | |
Flatten the environment and steps dimension into one batch dimension, | |
then shuffle and split into minibatches. | |
''' | |
n_steps, n_env = values.shape | |
n_dim = n_steps * n_env | |
indexes = minibatch_indexes(batch_size=batch_size, minibatch_size=minibatch_size) | |
obs_flat = obs.reshape((batch_size,) + obs_shape) | |
act_flat = actions.reshape((batch_size,) + action_shape) | |
probs_flat = logprobs.reshape((batch_size,) + action_shape) | |
adv_flat = advantages.reshape(n_dim) | |
val_flat = values.reshape(n_dim) | |
return [ | |
Minibatch( | |
obs_flat[idx], probs_flat[idx], act_flat[idx], adv_flat[idx], | |
adv_flat[idx] + val_flat[idx], val_flat[idx] | |
) | |
for idx in indexes | |
] | |
# + id="K7wXDJ9MGOWu" | |
# %% | |
def calc_policy_loss( | |
probs: Categorical, mb_action: t.Tensor, mb_advantages: t.Tensor, | |
mb_logprobs: t.Tensor, clip_coef: float | |
) -> t.Tensor: | |
''' | |
Return the policy loss, suitable for maximisation with gradient ascent. | |
probs: | |
a distribution containing the actor's unnormalized logits of | |
shape (minibatch, num_actions) | |
clip_coef: amount of clipping, denoted by epsilon in Eq 7. | |
normalize: if true, normalize mb_advantages to have mean 0, variance 1 | |
''' | |
adv_norm = (mb_advantages - mb_advantages.mean()) / mb_advantages.std() | |
ratio = t.exp(probs.log_prob(mb_action)) / t.exp(mb_logprobs) | |
min_left = ratio * adv_norm | |
min_right = t.clip(ratio, 1 - clip_coef, 1 + clip_coef) * adv_norm | |
return t.minimum(min_left, min_right).mean() | |
# + id="CmyxU6JWGMsG" | |
# %% | |
def calc_value_function_loss( | |
critic: nn.Sequential, mb_obs: t.Tensor, mb_returns: t.Tensor, v_coef: float | |
) -> t.Tensor: | |
'''Compute the value function portion of the loss function. | |
Need to minimise this | |
v_coef: | |
the coefficient for the value loss, which weights its contribution to | |
the overall loss. Denoted by c_1 in the paper. | |
''' | |
output = critic(mb_obs) | |
return v_coef * (output - mb_returns).pow(2).mean() / 2 | |
# + id="npyWs6xjGLkP" | |
# %% | |
def calc_entropy_loss(probs: Categorical, ent_coef: float): | |
'''Return the entropy loss term. | |
Need to maximise this | |
ent_coef: | |
The coefficient for the entropy loss, which weights its contribution to the overall loss. | |
Denoted by c_2 in the paper. | |
''' | |
return probs.entropy().mean() * ent_coef | |
if MAIN: | |
test_calc_entropy_bonus(calc_entropy_loss) | |
# + id="nqJeg1kZGKSG" | |
# %% | |
class PPOScheduler: | |
def __init__(self, optimizer: optim.Adam, initial_lr: float, end_lr: float, num_updates: int): | |
self.optimizer = optimizer | |
self.initial_lr = initial_lr | |
self.end_lr = end_lr | |
self.num_updates = num_updates | |
self.n_step_calls = 0 | |
def step(self): | |
''' | |
Implement linear learning rate decay so that after num_updates calls to step, | |
the learning rate is end_lr. | |
''' | |
lr = ( | |
self.initial_lr + | |
(self.end_lr - self.initial_lr) * self.n_step_calls / self.num_updates | |
) | |
for param in self.optimizer.param_groups: | |
param['lr'] = lr | |
self.n_step_calls += 1 | |
def make_optimizer( | |
agent: Agent, num_updates: int, initial_lr: float, end_lr: float | |
) -> Tuple[optim.Adam, PPOScheduler]: | |
'''Return an appropriately configured Adam with its attached scheduler.''' | |
optimizer = optim.Adam(agent.parameters(), lr=initial_lr, maximize=True) | |
scheduler = PPOScheduler( | |
optimizer=optimizer, initial_lr=initial_lr, end_lr=end_lr, num_updates=num_updates | |
) | |
return optimizer, scheduler | |
# + id="mgZ7-wsRCxJW" | |
class PPOArgs: | |
exp_name: str = 'cartpole.py' | |
seed: int = 1 | |
torch_deterministic: bool = True | |
cuda: bool = True | |
track: bool = True | |
wandb_project_name: str = "PPOCart" | |
wandb_entity: str = None | |
capture_video: bool = True | |
env_id: str = "CartPole-v1" | |
total_timesteps: int = 40_000 | |
learning_rate: float = 0.00025 | |
num_envs: int = 4 | |
num_steps: int = 128 | |
gamma: float = 0.99 | |
gae_lambda: float = 0.95 | |
num_minibatches: int = 4 | |
update_epochs: int = 4 | |
clip_coef: float = 0.2 | |
ent_coef: float = 0.01 | |
vf_coef: float = 0.5 | |
max_grad_norm: float = 0.5 | |
batch_size: int = 512 | |
minibatch_size: int = 128 | |
# + id="xeIu-J3ZwGyq" | |
def wandb_init(name: str, args: PPOArgs): | |
wandb.init( | |
project=args.wandb_project_name, | |
entity=args.wandb_entity, | |
sync_tensorboard=True, | |
config=vars(args), | |
name=name, | |
monitor_gym=True, | |
save_code=True, | |
settings=wandb.Settings(symlink=False) | |
) | |
# + id="gMYWqhsryYHy" | |
def set_seed(seed: int): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
# + id="T9j_L0Wpyrgz" | |
def rollout_phase( | |
next_obs: t.Tensor, next_done: t.Tensor, | |
agent: Agent, envs: gym.vector.SyncVectorEnv, | |
writer: SummaryWriter, device: torch.device, | |
global_step: int, action_shape: Tuple, | |
num_envs: int, num_steps: int, | |
) -> Tuple[ | |
TT['envs'], | |
TT['envs'], | |
TT['steps', 'envs'], | |
TT['steps', 'envs'], | |
TT['steps', 'envs'], | |
TT['steps', 'envs'], | |
TT['steps', 'envs'], | |
TT['steps', 'envs'], | |
]: | |
''' | |
Output: | |
next_obs, next_done, actions, dones, logprobs, obs, rewards, values | |
''' | |
obs = torch.zeros( | |
(num_steps, num_envs) + | |
envs.single_observation_space.shape | |
).to(device) | |
actions = torch.zeros( | |
(num_steps, num_envs) + | |
action_shape | |
).to(device) | |
logprobs = torch.zeros((num_steps, num_envs)).to(device) | |
rewards = torch.zeros((num_steps, num_envs)).to(device) | |
dones = torch.zeros((num_steps, num_envs)).to(device) | |
values = torch.zeros((num_steps, num_envs)).to(device) | |
for i in range(0, num_steps): | |
# Rollout phase | |
global_step += 1 | |
curr_obs = next_obs | |
done = next_done | |
with t.inference_mode(): | |
logits = agent.actor(curr_obs).detach() | |
q_values = agent.critic(curr_obs).detach().squeeze(-1) | |
prob = Categorical(logits=logits) | |
action = prob.sample() | |
logprob = prob.log_prob(action) | |
next_obs, reward, next_done, info = envs.step(action.numpy()) | |
next_obs = t.tensor(next_obs, device=device) | |
next_done = t.tensor(next_done, device=device) | |
actions[i] = action | |
dones[i] = done.detach().clone() | |
logprobs[i] = logprob | |
obs[i] = curr_obs | |
rewards[i] = t.tensor(reward, device=device) | |
values[i] = q_values | |
if writer is not None and "episode" in info.keys(): | |
for item in info['episode']: | |
if item is None or 'r' not in item.keys(): | |
continue | |
writer.add_scalar( | |
"charts/episodic_return", item["r"], global_step | |
) | |
writer.add_scalar( | |
"charts/episodic_length", item["l"], global_step | |
) | |
if global_step % 10 != 0: | |
continue | |
print( | |
f"global_step={global_step}, episodic_return={item['r']}" | |
) | |
print("charts/episodic_return", item["r"], global_step) | |
print("charts/episodic_length", item["l"], global_step) | |
return ( | |
next_obs, next_done, actions, dones, logprobs, obs, rewards, values | |
) | |
# + id="xdDhABIk5jyb" | |
def reset_env(envs, device): | |
next_obs = torch.Tensor(envs.reset()).to(device) | |
next_done = torch.zeros(envs.num_envs).to(device) | |
return next_obs, next_done | |
# + id="5CoMpUVU7rFT" | |
def get_action_shape(envs: gym.vector.SyncVectorEnv): | |
action_shape = envs.single_action_space.shape | |
assert action_shape is not None | |
assert isinstance( | |
envs.single_action_space, Discrete | |
), "only discrete action space is supported" | |
return action_shape | |
# + id="FHmn5kSUGFFu" | |
# %% | |
def train_ppo(args: PPOArgs): | |
t0 = int(time.time()) | |
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{t0}" | |
if args.track: | |
wandb_init(run_name, args) | |
log_dir = wandb.run.dir | |
writer = SummaryWriter(log_dir) | |
writer.add_text( | |
"hyperparameters", | |
"|param|value|\n|-|-|\n%s" % "\n".join([f"|{key}|{value}|" | |
for (key, value) in vars(args).items()]), | |
) | |
set_seed(args.seed) | |
torch.backends.cudnn.deterministic = args.torch_deterministic | |
device = torch.device( | |
"cuda" if torch.cuda.is_available() and args.cuda else "cpu" | |
) | |
envs = gym.vector.SyncVectorEnv([ | |
make_env(args.env_id, args.seed + i, i, args.capture_video, run_name) | |
for i in range(args.num_envs) | |
]) | |
agent = Agent(envs).to(device) | |
num_updates = args.total_timesteps // args.batch_size | |
(optimizer, scheduler) = make_optimizer( | |
agent, num_updates, args.learning_rate, 0.0 | |
) | |
global_step = 0 | |
old_approx_kl = 0.0 | |
approx_kl = 0.0 | |
value_loss = t.tensor(0.0) | |
policy_loss = t.tensor(0.0) | |
entropy_loss = t.tensor(0.0) | |
clipfracs = [] | |
info = [] | |
action_shape = get_action_shape(envs) | |
next_obs, next_done = reset_env(envs, device) | |
start_time = time.time() | |
for _ in range(num_updates): | |
rp = rollout_phase( | |
next_obs, next_done, agent, envs, writer, device, global_step, | |
action_shape, args.num_envs, args.num_steps, | |
) | |
next_obs, next_done, actions, dones, logprobs, obs, rewards, values = rp | |
with t.inference_mode(): | |
next_value = rearrange(agent.critic(next_obs), "env 1 -> 1 env") | |
advantages = compute_advantages( | |
next_value, next_done, rewards, values, dones, device, args.gamma, | |
args.gae_lambda | |
) | |
clipfracs.clear() | |
mb: Minibatch | |
for _ in range(args.update_epochs): | |
minibatches = make_minibatches( | |
obs, | |
logprobs, | |
actions, | |
advantages, | |
values, | |
envs.single_observation_space.shape, | |
action_shape, | |
args.batch_size, | |
args.minibatch_size, | |
) | |
for mb in minibatches: | |
probs = Categorical(logits=agent.actor(mb.obs)) | |
value_loss = calc_value_function_loss( | |
agent.critic, mb.obs, mb.returns, args.vf_coef | |
) | |
policy_loss = calc_policy_loss( | |
probs, mb.actions, mb.advantages, mb.logprobs, | |
args.clip_coef | |
) | |
entropy_loss = calc_entropy_loss(probs, args.ent_coef) | |
loss = policy_loss + entropy_loss - value_loss | |
loss.backward() | |
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) | |
optimizer.step() | |
optimizer.zero_grad() | |
scheduler.step() | |
(y_pred, y_true) = (mb.values.cpu().numpy(), mb.returns.cpu().numpy()) | |
var_y = np.var(y_true) | |
explained_var = ( | |
np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y | |
) | |
with torch.no_grad(): | |
newlogprob: t.Tensor = probs.log_prob(mb.actions) | |
logratio = newlogprob - mb.logprobs | |
ratio = logratio.exp() | |
old_approx_kl = (-logratio).mean().item() | |
approx_kl = (ratio - 1 - logratio).mean().item() | |
clipfracs += [ | |
((ratio - 1.0).abs() > args.clip_coef).float().mean().item() | |
] | |
writer.add_scalar( | |
"charts/learning_rate", optimizer.param_groups[0]["lr"], | |
global_step | |
) | |
writer.add_scalar("losses/value_loss", value_loss.item(), global_step) | |
writer.add_scalar("losses/policy_loss", policy_loss.item(), global_step) | |
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step) | |
writer.add_scalar("losses/old_approx_kl", old_approx_kl, global_step) | |
writer.add_scalar("losses/approx_kl", approx_kl, global_step) | |
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step) | |
writer.add_scalar( | |
"losses/explained_variance", explained_var, global_step | |
) | |
writer.add_scalar( | |
"charts/SPS", | |
int(global_step / (time.time() - start_time)), | |
global_step | |
) | |
if global_step % 1000 == 0: | |
print( | |
"steps per second (SPS):", | |
int(global_step / (time.time() - start_time)) | |
) | |
print("losses/value_loss", value_loss.item()) | |
print("losses/policy_loss", policy_loss.item()) | |
print("losses/entropy", entropy_loss.item()) | |
print(f'... training complete after {global_step} steps') | |
envs.close() | |
writer.close() | |
if args.track: | |
model_path = f'{wandb.run.dir}/model_state_dict.pt' | |
print(f'Saving model to {model_path}') | |
t.save(agent.state_dict(), model_path) | |
wandb.finish() | |
print('...wandb finished.') | |
# + id="-oZHTffJZP17" executionInfo={"status": "ok", "timestamp": 1677942433344, "user_tz": 0, "elapsed": 66678, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} colab={"base_uri": "https://localhost:8080/", "height": 1000, "referenced_widgets": ["c966d31ee30d43e0a8cc269a8a22b717", "294a378e56c44e4c9a3c58e8bf5b5f62", "473cc94ea22746f3a51e2186d973f741", "e3bb8c5a2c3841c2b33a7b8afb66a88f", "6133d8cbba964b7e8755e1c0691caf27", "1bf18f5fae9c4f58b2e360bc35251a94", "e820d38826494e248ca8974cccc1f338", "05eebe964b4b4c93b4aa0eac9ff865cb"]} outputId="0cfbb11c-831a-4622-8c01-afebae209d04" | |
# #%%wandb | |
if MAIN: | |
args = PPOArgs() | |
train_ppo(args) | |
# + colab={"base_uri": "https://localhost:8080/"} id="xJW6KL7QIj4s" executionInfo={"status": "ok", "timestamp": 1677942639015, "user_tz": 0, "elapsed": 105286, "user": {"displayName": "Oskar Hollinsworth", "userId": "00307706571197304608"}} outputId="7c529849-6d46-4a6a-def5-e1c0ef652c64" | |
# !python demo.py | |
# + id="P7ZfUlAqImIr" | |
# !pip freeze > requirements.txt | |
# + id="x_bhyL3GLnhr" | |