Ituria / agent_workflow.py
Sivan Ratson
use API provided by the user.
d61d72d
raw
history blame
13.4 kB
import os
import logging
from typing import List, Dict, Any, Optional, Tuple, Callable, Union
from dotenv import load_dotenv
from llm_providers import LLMProvider
from langchain.schema import HumanMessage
from tantivy_search_agent import TantivySearchAgent
load_dotenv()
class SearchAgent:
def __init__(self, tantivy_agent: TantivySearchAgent, provider_name: str = "Gemini", api_keys: Dict[str, str] = None):
"""Initialize the search agent with Tantivy agent and LLM client"""
self.tantivy_agent = tantivy_agent
self.logger = logging.getLogger(__name__)
# Initialize LLM provider with API keys
self.llm_provider = LLMProvider(api_keys)
self.llm = None
self.set_provider(provider_name)
self.min_confidence_threshold = 0.7
def set_provider(self, provider_name: str) -> None:
self.llm = self.llm_provider.get_provider(provider_name)
if not self.llm:
raise ValueError(f"Provider {provider_name} not available")
self.current_provider = provider_name
def get_available_providers(self) -> list[str]:
return self.llm_provider.get_available_providers()
def get_query(self, query: str, failed_queries: List[Dict[str, str]] = []) -> str:
"""Generate a Tantivy query using Claude, considering previously failed queries"""
try:
if not self.llm:
raise ValueError("LLM provider not initialized")
prompt = (
"Create a query for this search request with the following restrictions:\n"+
self.tantivy_agent.get_query_instructions()+
"\n\nAdditional instructions: \n"
"1. return only the search query without any other text\n"
"2. Use only Hebrew terms for the search query\n"
"3. the corpus to search in is an ancient Hebrew corpus - Tora and Talmud. so Try to use ancient Hebrew terms and or Talmudic expressions."
"4. prevent modern words that are not common in talmudic texts \n"
f"the search request: {query}"
)
if failed_queries:
prompt += (
f"\n\nPrevious failed queries:\n"+
"------------------------\n"+
'\n'.join(f"Query: {q['query']}, Reason: {q['reason']}" for q in failed_queries)+
"\n\n"
"Please generate an alternative query that:\n"
"1. Uses different Hebrew synonyms or related terms\n"
"2. Tries broader or more general terms\n"
"3. Adjusts proximity values or uses wildcards\n"
"4. Prevents using modern words that are not common in ancient hebrew and talmud texts\n"
)
response = self.llm.invoke([HumanMessage(content=prompt)])
tantivy_query = response.content.strip()
self.logger.info(f"Generated Tantivy query: {tantivy_query}")
return tantivy_query
except Exception as e:
self.logger.error(f"Error generating query: {e}")
# Fallback to basic quoted search
return f'"{query}"'
def _evaluate_results(self, results: List[Dict[str, Any]], query: str) -> Dict[str, Any]:
"""Evaluate search results using Claude with confidence scoring"""
if not self.llm:
raise ValueError("LLM provider not initialized")
# Prepare context from results
context = "\n".join(f"Result {i}. Source: {r.get('reference',[])}\n Text: {r.get('text', [])}"
for i, r in enumerate(results)
)
try:
message = self.llm.invoke([HumanMessage(content=f"""Evaluate the search results for answering this question:
Question: {query}
Search Results:
{context}
Provide evaluation in this format (3 lines):
Confidence score (0.0 to 1.0) indicating how well the results can answer the question. this line should include only the number return, don't include '[line 1]'
ACCEPT if score >= {self.min_confidence_threshold}, REFINE if score < {self.min_confidence_threshold}. return only the word ACCEPT or REFINE.
Detailed explanation of what information is present or missing, don't include '[line 3]'. it should be only in Hebrew
""")])
lines = message.content.strip().replace('\n\n', '\n').split('\n')
confidence = float(lines[0])
decision = lines[1].upper()
explanation = lines[2]
is_good = decision == 'ACCEPT'
self.logger.info(f"Evaluation: Confidence={confidence}, Decision={decision}")
self.logger.info(f"Explanation: {explanation}")
return {
"confidence": confidence,
"is_sufficient": is_good,
"explanation": explanation,
}
except Exception as e:
self.logger.error(f"Error evaluating results: {e}")
# Fallback to simple evaluation
return {
"confidence": 0.0,
"is_sufficient": False,
"explanation": "",
}
def _generate_answer(self, query: str, results: List[Dict[str, Any]]) -> str:
"""Generate answer using Claude with improved context utilization"""
if not self.llm:
raise ValueError("LLM provider not initialized")
if not results:
return "ืœื ื ืžืฆืื• ืชื•ืฆืื•ืช"
# Prepare context from results
context = "\n".join(f"Result {i+1}. Source: {r.get('reference',[])}\n Text: {r.get('text', [])}"
for i, r in enumerate(results)
)
try:
message = self.llm.invoke([HumanMessage(content=f"""Based on these search results, answer this question:
Question: {query}
Search Results:
{context}
Requirements for your answer:
1. Use only information from the search results
2. Be comprehensive but concise
3. Structure the answer clearly
4. If any aspect of the question cannot be fully answered, acknowledge this
5. cite sources for each fact or information you use
6. The answer should be only in Hebrew
""")])
return message.content.strip()
except Exception as e:
self.logger.error(f"Error generating answer: {e}")
return f"I encountered an error generating the answer: {str(e)}"
def search_and_answer(self, query: str, num_results: int = 10, max_iterations: int = 3,
on_step: Optional[Callable[[Dict[str, Any]], None]] = None) -> Dict[str, Any]:
"""Execute multi-step search process using Tantivy with streaming updates"""
steps = []
all_results = []
# Step 1: Generate Tantivy query
initial_query = self.get_query(query)
step = {
'action': 'ื™ืฆื™ืจืช ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ',
'description': 'ื ื•ืฆืจื” ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ ืขื‘ื•ืจ ืžื ื•ืข ื”ื—ื™ืคื•ืฉ',
'results': [{'type': 'query', 'content': initial_query}]
}
steps.append(step)
if on_step:
on_step(step)
# Step 2: Initial search with Tantivy query
results = self.tantivy_agent.search(initial_query, num_results)
step = {
'action': 'ื—ื™ืคื•ืฉ ื‘ืžืื’ืจ',
'description': f'ื—ื™ืคื•ืฉ ื‘ืžืื’ืจ ืขื‘ื•ืจ ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ: {initial_query}',
'results': [{'type': 'document', 'content': {
'title': r['title'],
'reference': r['reference'],
'topics': r['topics'],
'highlights': r['highlights'],
'score': r['score']
}} for r in results]
}
steps.append(step)
if on_step:
on_step(step)
failed_queries = []
if results.__len__() == 0:
failed_queries.append({'query': initial_query, 'reason': 'no results'})
is_sufficient = False
else:
all_results.extend(results)
# Step 3: Evaluate results
evaluation = self._evaluate_results(results, query)
confidence = evaluation['confidence']
is_sufficient = evaluation['is_sufficient']
explanation = evaluation['explanation']
step = {
'action': 'ื“ื™ืจื•ื’ ืชื•ืฆืื•ืช',
'description': 'ื“ื™ืจื•ื’ ืชื•ืฆืื•ืช ื—ื™ืคื•ืฉ',
'results': [{
'type': 'evaluation',
'content': {
'status': 'accepted' if is_sufficient else 'insufficient',
'confidence': confidence,
'explanation': explanation,
}
}]
}
steps.append(step)
if on_step:
on_step(step)
if not is_sufficient:
failed_queries.append({'query': initial_query, 'reason': explanation})
# Step 4: Additional searches if needed
attempt = 2
while not is_sufficient and attempt < max_iterations:
# Generate new query
new_query = self.get_query(query, failed_queries)
step = {
'action': f'ื™ืฆื™ืจืช ืฉืื™ืœืชื” ืžื—ื“ืฉ (ื ื™ืกื™ื•ืŸ {attempt})',
'description': 'ื ื•ืฆืจื” ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ ื ื•ืกืคืช ืขื‘ื•ืจ ืžื ื•ืข ื”ื—ื™ืคื•ืฉ',
'results': [
{'type': 'new_query', 'content': new_query}
]
}
steps.append(step)
if on_step:
on_step(step)
# Search with new query
results = self.tantivy_agent.search(new_query, num_results)
step = {
'action': f'ื—ื™ืคื•ืฉ ื ื•ืกืฃ (ื ื™ืกื™ื•ืŸ {attempt}) ',
'description': f'ืžื—ืคืฉ ื‘ืžืื’ืจ ืขื‘ื•ืจ ืฉืื™ืœืชืช ื—ื™ืคื•ืฉ: {new_query}',
'results': [{'type': 'document', 'content': {
'title': r['title'],
'reference': r['reference'],
'topics': r['topics'],
'highlights': r['highlights'],
'score': r['score']
}} for r in results]
}
steps.append(step)
if on_step:
on_step(step)
if results.__len__() == 0:
failed_queries.append({'query': new_query, 'reason': 'no results'})
else:
all_results.extend(results)
# Re-evaluate with current results
evaluation = self._evaluate_results(results, query)
confidence = evaluation['confidence']
is_sufficient = evaluation['is_sufficient']
explanation = evaluation['explanation']
step = {
'action': f'ื“ื™ืจื•ื’ ืชื•ืฆืื•ืช (ื ื™ืกื™ื•ืŸ {attempt})',
'description': 'ื“ื™ืจื•ื’ ืชื•ืฆืื•ืช ื—ื™ืคื•ืฉ ืœื ื™ืกื™ื•ืŸ ื–ื”',
'explanation': explanation,
'results': [{
'type': 'evaluation',
'content': {
'status': 'accepted' if is_sufficient else 'insufficient',
'confidence': confidence,
'explanation': explanation,
}
}]
}
steps.append(step)
if on_step:
on_step(step)
if not is_sufficient:
failed_queries.append({'query': new_query, 'reason': explanation})
attempt += 1
# Step 5: Generate final answer
answer = self._generate_answer(query, all_results)
final_result = {
'steps': steps,
'answer': answer,
'sources': [{
'title': r['title'],
'reference': r['reference'],
'topics': r['topics'],
'path': r['file_path'],
'highlights': r['highlights'],
'text': r['text'],
'score': r['score']
} for r in all_results]
}
# Send final result through callback
if on_step:
on_step({
'action': 'ืกื™ื•ื',
'description': 'ื”ื—ื™ืคื•ืฉ ื”ื•ืฉืœื',
'final_result': final_result
})
return final_result