Researcher / src /Surveyor.py
sidphbot's picture
arxiv id list support
f310b8b
raw
history blame
67.1 kB
from arxiv_public_data.fulltext import convert_directory_parallel
from arxiv_public_data import internal_citations
import torch
import os
from summarizer import Summarizer
from sentence_transformers import SentenceTransformer
import spacy
import numpy as np
from keybert import KeyBERT
import shutil, joblib
from distutils.dir_util import copy_tree
try:
from transformers import *
except:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoConfig, AutoModel, LEDTokenizer, \
LEDForConditionalGeneration
from src.defaults import DEFAULTS_CPU_COMPAT, DEFAULTS_HIGH_GPU
class Surveyor:
'''
A class to abstract all nlp and data mining helper functions as well as workflows
required to generate the survey from a single query, with absolute configurability
'''
def __init__(
self,
pdf_dir=None,
txt_dir=None,
img_dir=None,
tab_dir=None,
dump_dir=None,
models_dir=None,
title_model_name=None,
ex_summ_model_name=None,
ledmodel_name=None,
embedder_name=None,
nlp_name=None,
similarity_nlp_name=None,
kw_model_name=None,
high_gpu=False,
refresh_models=False,
no_save_models=False,
print_fn=None,
survey_print_fn=None
):
'''
Initializes models and directory structure for the surveyor
Optional Params:
- pdf_dir: String, pdf paper storage directory - defaults to arxiv_data/tarpdfs/
- txt_dir: String, text-converted paper storage directory - defaults to arxiv_data/fulltext/
- img_dir: String, image image storage directory - defaults to arxiv_data/images/
- tab_dir: String, tables storage directory - defaults to arxiv_data/tables/
- dump_dir: String, all_output_dir - defaults to arxiv_dumps/
- models_dir: String, directory to save to huge models
- title_model_name: String, title model name/tag in hugging-face, defaults to `Callidior/bert2bert-base-arxiv-titlegen`
- ex_summ_model_name: String, extractive summary model name/tag in hugging-face, defaults to `allenai/scibert_scivocab_uncased`
- ledmodel_name: String, led model(for abstractive summary) name/tag in hugging-face, defaults to `allenai/led-large-16384-arxiv`
- embedder_name: String, sentence embedder name/tag in hugging-face, defaults to `paraphrase-MiniLM-L6-v2`
- nlp_name: String, spacy model name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_scibert`
- similarity_nlp_name: String, spacy downstream trained model(for similarity) name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_lg`
- kw_model_name: String, keyword extraction model name/tag in hugging-face, defaults to `distilbert-base-nli-mean-tokens`
- high_gpu: Bool, High GPU usage permitted, defaults to False
- refresh_models: Bool, Refresh model downloads with given names (needs atleast one model name param above), defaults to False
- no_save_models: forces refresh models
- max_search: int maximium number of papers to gaze at - defaults to 100
- num_papers: int maximium number of papers to download and analyse - defaults to 25
'''
self.print_fn = print
if print_fn is not None:
self.print_fn = print_fn
self.survey_print_fn = self.print_fn
if survey_print_fn is not None:
self.survey_print_fn = survey_print_fn
self.torch_device = 'cpu'
self.print_fn("\nTorch_device: " + self.torch_device)
if torch.cuda.is_available():
self.torch_device = 'cuda'
spacy.require_gpu()
self.high_gpu = high_gpu
#self.DEFAULTS = DEFAULTS_CPU_COMPAT
#if self.high_gpu:
self.DEFAULTS = DEFAULTS_HIGH_GPU
if not kw_model_name:
kw_model_name = self.DEFAULTS["kw_model_name"]
self.num_papers = self.DEFAULTS['num_papers']
self.max_search = self.DEFAULTS['max_search']
if not models_dir:
models_dir = self.DEFAULTS['models_dir']
models_found = False
if os.path.exists(models_dir) and not no_save_models:
if len(os.listdir(models_dir)) > 6:
models_found = True
if not title_model_name:
title_model_name = self.DEFAULTS["title_model_name"]
if not ex_summ_model_name:
ex_summ_model_name = self.DEFAULTS["ex_summ_model_name"]
if not ledmodel_name:
ledmodel_name = self.DEFAULTS["ledmodel_name"]
if not embedder_name:
embedder_name = self.DEFAULTS["embedder_name"]
if not nlp_name:
nlp_name = self.DEFAULTS["nlp_name"]
if not similarity_nlp_name:
similarity_nlp_name = self.DEFAULTS["similarity_nlp_name"]
if refresh_models or not models_found:
self.print_fn(f'\nInitializing models {"and saving (about 5GB)" if not no_save_models else ""}')
if not no_save_models:
self.clean_dirs([models_dir])
self.title_tokenizer = AutoTokenizer.from_pretrained(title_model_name, trust_remote_code=True)
self.title_model = AutoModelForSeq2SeqLM.from_pretrained(title_model_name, trust_remote_code=True).to(self.torch_device)
self.title_model.eval()
if not no_save_models:
self.title_model.save_pretrained(models_dir + "/title_model")
#self.title_tokenizer.save_pretrained(models_dir + "/title_tokenizer")
# summary model
self.custom_config = AutoConfig.from_pretrained(ex_summ_model_name)
self.custom_config.output_hidden_states = True
self.summ_tokenizer = AutoTokenizer.from_pretrained(ex_summ_model_name)
self.summ_model = AutoModel.from_pretrained(ex_summ_model_name, config=self.custom_config).to(
self.torch_device)
self.summ_model.eval()
if not no_save_models:
self.summ_model.save_pretrained(models_dir + "/summ_model")
#self.summ_tokenizer.save_pretrained(models_dir + "/summ_tokenizer")
self.model = Summarizer(custom_model=self.summ_model, custom_tokenizer=self.summ_tokenizer)
if 'led' in ledmodel_name:
self.ledtokenizer = LEDTokenizer.from_pretrained(ledmodel_name)
self.ledmodel = LEDForConditionalGeneration.from_pretrained(ledmodel_name).to(self.torch_device)
elif 't5' in ledmodel_name:
self.ledtokenizer = AutoTokenizer.from_pretrained(ledmodel_name)
self.ledmodel = T5ForConditionalGeneration.from_pretrained(ledmodel_name).to(self.torch_device)
elif 'bart' in ledmodel_name:
self.ledtokenizer = AutoTokenizer.from_pretrained(ledmodel_name)
self.ledmodel = BartForConditionalGeneration.from_pretrained(ledmodel_name).to(self.torch_device)
self.ledmodel.eval()
if not no_save_models:
self.ledmodel.save_pretrained(models_dir + "/ledmodel")
#self.ledtokenizer.save_pretrained(models_dir + "/ledtokenizer")
self.embedder = SentenceTransformer(embedder_name)
self.embedder.eval()
if not no_save_models:
self.embedder.save(models_dir + "/embedder")
else:
self.print_fn("\n-Initializing from previously saved models at" + models_dir)
self.title_tokenizer = AutoTokenizer.from_pretrained(title_model_name)
self.title_model = AutoModelForSeq2SeqLM.from_pretrained(models_dir + "/title_model").to(self.torch_device)
self.title_model.eval()
# summary model
#self.summ_config = AutoConfig.from_pretrained(ex_summ_model_name)
#self.summ_config.output_hidden_states = True
self.summ_tokenizer = AutoTokenizer.from_pretrained(ex_summ_model_name)
self.summ_model = AutoModel.from_pretrained(models_dir + "/summ_model").to(
self.torch_device)
self.summ_model.eval()
self.model = Summarizer(custom_model=self.summ_model, custom_tokenizer=self.summ_tokenizer)
if 'led' in ledmodel_name:
self.ledtokenizer = LEDTokenizer.from_pretrained(ledmodel_name)
self.ledmodel = LEDForConditionalGeneration.from_pretrained(models_dir + "/ledmodel").to(self.torch_device)
elif 't5' in ledmodel_name:
self.ledtokenizer = AutoTokenizer.from_pretrained(ledmodel_name)
self.ledmodel = T5ForConditionalGeneration.from_pretrained(models_dir + "/ledmodel").to(self.torch_device)
elif 'bart' in ledmodel_name:
self.ledtokenizer = AutoTokenizer.from_pretrained(ledmodel_name)
self.ledmodel = BartForConditionalGeneration.from_pretrained(models_dir + "/ledmodel").to(self.torch_device)
self.ledmodel.eval()
self.embedder = SentenceTransformer(models_dir + "/embedder")
self.embedder.eval()
self.nlp = spacy.load(nlp_name)
self.similarity_nlp = spacy.load(similarity_nlp_name)
self.kw_model = KeyBERT(kw_model_name)
self.define_structure(pdf_dir=pdf_dir, txt_dir=txt_dir, img_dir=img_dir, tab_dir=tab_dir, dump_dir=dump_dir)
def define_structure(self, pdf_dir=None, txt_dir=None, img_dir=None, tab_dir=None, dump_dir=None):
if pdf_dir:
self.pdf_dir = pdf_dir
else:
self.pdf_dir = self.DEFAULTS["pdf_dir"]
if txt_dir:
self.txt_dir = txt_dir
else:
self.txt_dir = self.DEFAULTS["txt_dir"]
if img_dir:
self.img_dir = img_dir
else:
self.img_dir = self.DEFAULTS["img_dir"]
if tab_dir:
self.tab_dir = tab_dir
else:
self.tab_dir = self.DEFAULTS["tab_dir"]
if dump_dir:
self.dump_dir = dump_dir
else:
self.dump_dir = self.DEFAULTS["dump_dir"]
dirs = [self.pdf_dir, self.txt_dir, self.img_dir, self.tab_dir, self.dump_dir]
if sum([True for dir in dirs if 'arxiv_data/' in dir]):
base = os.path.dirname("arxiv_data/")
if not os.path.exists(base):
os.mkdir(base)
self.clean_dirs(dirs)
def clean_dirs(self, dirs):
import shutil
for d in dirs:
if os.path.exists(d):
shutil.rmtree(d)
os.mkdir(d)
def pdf_route(self, pdf_dir, txt_dir, img_dir, tab_dir, dump_dir, papers_meta):
## Data prep
import joblib
# test full again - check images - check dfs !!
self.clean_dirs([pdf_dir, txt_dir, img_dir, tab_dir, dump_dir])
papers = papers_meta[:self.num_papers]
selected_papers = papers
self.print_fn("\n-First stage paper collection...")
ids_none, papers, cites = self.fetch_papers(dump_dir, img_dir, papers, pdf_dir, tab_dir, txt_dir)
self.print_fn("\n-First stage paper collection complete, papers collected: \n" + ', '.join([p['id'] for p in papers]))
new_papers = papers_meta[self.num_papers : self.num_papers + len(ids_none)]
_ = self.get_freq_cited(cites)
'''
filtered_idlist = []
for c in self.get_freq_cited(cites):
if c in
_, new_searched_papers = self.search(filtered_idlist)
new_papers.extend(new_searched_papers)
'''
selected_papers.extend(new_papers)
self.print_fn("\n-Second stage paper collection...")
_, new_papers, _ = self.fetch_papers(dump_dir, img_dir, new_papers, pdf_dir, tab_dir, txt_dir, repeat=True)
self.print_fn("\n-Second stage paper collection complete, new papers collected: \n" + ', '.join([p['id'] for p in new_papers]))
papers.extend(new_papers)
joblib.dump(papers, dump_dir + 'papers_extracted_pdf_route.dmp')
copy_tree(img_dir, dump_dir + os.path.basename(img_dir))
copy_tree(tab_dir, dump_dir + os.path.basename(tab_dir))
self.print_fn("\n-Extracting section-wise highlights.. ")
papers = self.extract_highlights(papers)
return papers, selected_papers
def get_freq_cited(self, cites_dict, k=5):
cites_list = []
for k, v in cites_dict.items():
cites_list.append(k)
[cites_list.append(val) for val in v]
cite_freqs = {cite: cites_list.count(cite) for cite in set(cites_list)}
sorted_cites = dict(sorted(cite_freqs.items(), key=lambda item: item[1], reverse=True)[:5])
self.print_fn("\n-The most cited paper ids are:\n" + str(sorted_cites))
return sorted_cites.keys()
def fetch_papers(self, dump_dir, img_dir, papers, pdf_dir, tab_dir, txt_dir, repeat=False):
import tempfile
if repeat:
with tempfile.TemporaryDirectory() as dirpath:
self.print_fn("\n- downloading extra pdfs.. ")
# full text preparation of selected papers
self.download_pdfs(papers, dirpath)
dirpath_pdfs = os.listdir(dirpath)
for file_name in dirpath_pdfs:
full_file_name = os.path.join(dirpath, file_name)
if os.path.isfile(full_file_name):
shutil.copy(full_file_name, pdf_dir)
self.print_fn("\n- converting extra pdfs.. ")
self.convert_pdfs(dirpath, txt_dir)
else:
self.print_fn("\n- downloading pdfs.. ")
# full text preparation of selected papers
self.download_pdfs(papers, pdf_dir)
self.print_fn("\n- converting pdfs.. ")
self.convert_pdfs(pdf_dir, txt_dir)
# plugging citations to our papers object
self.print_fn("\n- plugging in citation network.. ")
papers, cites = self.cocitation_network(papers, txt_dir)
joblib.dump(papers, dump_dir + 'papers_selected_pdf_route.dmp')
from distutils.dir_util import copy_tree
copy_tree(txt_dir, dump_dir + os.path.basename(txt_dir))
copy_tree(pdf_dir, dump_dir + os.path.basename(pdf_dir))
self.print_fn("\n- extracting structure.. ")
papers, ids_none = self.extract_structure(papers, pdf_dir, txt_dir, img_dir, dump_dir, tab_dir)
return ids_none, papers, cites
def tar_route(self, pdf_dir, txt_dir, img_dir, tab_dir, papers):
## Data prep
import joblib
# test full again - check images - check dfs !!
self.clean_dirs([pdf_dir, txt_dir, img_dir, tab_dir])
# full text preparation of selected papers
self.download_sources(papers, pdf_dir)
self.convert_pdfs(pdf_dir, txt_dir)
# plugging citations to our papers object
papers, cites = self.cocitation_network(papers, txt_dir)
joblib.dump(papers, 'papers_selected_tar_route.dmp')
papers = self.extract_structure(papers, pdf_dir, txt_dir, img_dir, tab_dir)
joblib.dump(papers, 'papers_extracted_tar_route.dmp')
return papers
def build_doc(self, research_sections, papers, query=None, filename='survey.txt'):
import arxiv2bib
self.print_fn("\n-building bibliography entries.. ")
bibentries = arxiv2bib.arxiv2bib([p['id'] for p in papers])
bibentries = [r.bibtex() for r in bibentries]
self.print_fn("\n-building final survey file .. at "+ filename)
file = open(filename, 'w+')
if query is None:
query = 'Internal(existing) research'
file.write("----------------------------------------------------------------------")
file.write("Title: A survey on " + query)
self.survey_print_fn("")
self.survey_print_fn("----------------------------------------------------------------------")
self.survey_print_fn("Title: A survey on " + query)
file.write("Author: Auto-Research (github.com/sidphbot/Auto-Research)")
self.survey_print_fn("Author: Auto-Research (github.com/sidphbot/Auto-Research)")
file.write("Dev: Auto-Research (github.com/sidphbot/Auto-Research)")
self.survey_print_fn("Dev: Auto-Research (github.com/sidphbot/Auto-Research)")
file.write("Disclaimer: This survey is intended to be a research starter. This Survey is Machine-Summarized, "+
"\nhence some sentences might be wrangled or grammatically incorrect. However all sentences are "+
"\nmined with proper citations. As All of the text is practically quoted texted, hence to "+
"\nimprove visibility, all the papers are duly cited in the Bibiliography section. as bibtex "+
"\nentries(only to avoid LaTex overhead). ")
self.survey_print_fn("Disclaimer: This survey is intended to be a research starter. This Survey is Machine-Summarized, "+
"\nhence some sentences might be wrangled or grammatically incorrect. However all sentences are "+
"\nmined with proper citations. As All of the text is practically quoted texted, hence to "+
"\nimprove visibility, all the papers are duly cited in the Bibiliography section. as bibtex "+
"\nentries(only to avoid LaTex overhead). ")
file.write("----------------------------------------------------------------------")
self.survey_print_fn("----------------------------------------------------------------------")
file.write("")
self.survey_print_fn("")
file.write('ABSTRACT')
self.survey_print_fn('ABSTRACT')
self.survey_print_fn("=================================================")
file.write("=================================================")
file.write("")
self.survey_print_fn("")
file.write(research_sections['abstract'])
self.survey_print_fn(research_sections['abstract'])
file.write("")
self.survey_print_fn("")
file.write('INTRODUCTION')
self.survey_print_fn('INTRODUCTION')
self.survey_print_fn("=================================================")
file.write("=================================================")
file.write("")
self.survey_print_fn("")
file.write(research_sections['introduction'])
self.survey_print_fn(research_sections['introduction'])
file.write("")
self.survey_print_fn("")
for k, v in research_sections.items():
if k not in ['abstract', 'introduction', 'conclusion']:
file.write(k.upper())
self.survey_print_fn(k.upper())
self.survey_print_fn("=================================================")
file.write("=================================================")
file.write("")
self.survey_print_fn("")
file.write(v)
self.survey_print_fn(v)
file.write("")
self.survey_print_fn("")
file.write('CONCLUSION')
self.survey_print_fn('CONCLUSION')
self.survey_print_fn("=================================================")
file.write("=================================================")
file.write("")
self.survey_print_fn("")
file.write(research_sections['conclusion'])
self.survey_print_fn(research_sections['conclusion'])
file.write("")
self.survey_print_fn("")
file.write('REFERENCES')
self.survey_print_fn('REFERENCES')
self.survey_print_fn("=================================================")
file.write("=================================================")
file.write("")
self.survey_print_fn("")
for entry in bibentries:
file.write(entry)
self.survey_print_fn(entry)
file.write("")
self.survey_print_fn("")
self.survey_print_fn("========================XXX=========================")
file.write("========================XXX=========================")
file.close()
def build_basic_blocks(self, corpus_known_sections, corpus):
research_blocks = {}
for head, textarr in corpus_known_sections.items():
if 'cuda' in self.torch_device:
torch.cuda.empty_cache()
# self.print_fn(head.upper())
with torch.no_grad():
summtext = self.model(" ".join([l.lower() for l in textarr]), ratio=0.5)
res = self.nlp(summtext)
res = set([str(sent) for sent in list(res.sents)])
summtext = ''.join([line for line in res])
# pself.print_fn(summtext)
research_blocks[head] = summtext
return research_blocks
def abstractive_summary(self, longtext):
'''
faulty method
input_ids = ledtokenizer(longtext, return_tensors="pt").input_ids
global_attention_mask = torch.zeros_like(input_ids)
# set global_attention_mask on first token
global_attention_mask[:, 0] = 1
sequences = ledmodel.generate(input_ids, global_attention_mask=global_attention_mask).sequences
summary = ledtokenizer.batch_decode(sequences)
'''
if 'cuda' in self.torch_device:
torch.cuda.empty_cache()
inputs = self.ledtokenizer.prepare_seq2seq_batch(longtext, truncation=True, padding='longest',
return_tensors='pt').to(self.torch_device)
with torch.no_grad():
summary_ids = self.ledmodel.generate(**inputs)
summary = self.ledtokenizer.batch_decode(summary_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
res = self.nlp(summary[0])
res = set([str(sent) for sent in list(res.sents)])
summtext = ''.join([line for line in res])
#self.print_fn("abstractive summary type:" + str(type(summary)))
return summtext
def get_abstract(self, abs_lines, corpus_known_sections, research_blocks):
# abs_lines = " ".join(abs_lines)
abs_lines = ""
abs_lines += " ".join([l.lower() for l in corpus_known_sections['abstract']])
abs_lines += research_blocks['abstract']
# self.print_fn(abs_lines)
try:
return self.abstractive_summary(abs_lines)
except:
highlights = self.extractive_summary(abs_lines)
return self.abstractive_summary(highlights)
def get_corpus_lines(self, corpus):
abs_lines = []
types = set()
for k, v in corpus.items():
# self.print_fn(v)
types.add(type(v))
abstext = k + '. ' + v.replace('\n', ' ')
abstext = self.nlp(abstext)
abs_lines.extend([str(sent).lower() for sent in list(abstext.sents)])
#self.print_fn("unique corpus value types:" + str(types))
# abs_lines = '\n'.join([str(sent) for sent in abs_lines.sents])
return abs_lines
def get_sectioned_docs(self, papers, papers_meta):
import random
docs = []
for p in papers:
for section in p['sections']:
if len(section['highlights']) > 0:
if self.high_gpu:
content = self.generate_title(section['highlights'])
else:
content = self.extractive_summary(''.join(section['highlights']))
docs.append(content)
selected_pids = [p['id'] for p in papers]
meta_abs = []
for p in papers_meta:
if p['id'] not in selected_pids:
meta_abs.append(self.generate_title(p['abstract']))
docs.extend(meta_abs)
#self.print_fn("meta_abs num"+str(len(meta_abs)))
#self.print_fn("selected_pids num"+str(len(selected_pids)))
#self.print_fn("papers_meta num"+str(len(papers_meta)))
#assert (len(meta_abs) + len(selected_pids) == len(papers_meta))
assert ('str' in str(type(random.sample(docs, 1)[0])))
return [doc for doc in docs if doc != '']
def cluster_lines(self, abs_lines):
from sklearn.cluster import KMeans
# from bertopic import BERTopic
# topic_model = BERTopic(embedding_model=embedder)
if 'cuda' in self.torch_device:
torch.cuda.empty_cache()
corpus_embeddings = self.embedder.encode(abs_lines)
# Normalize the embeddings to unit length
corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True)
with torch.no_grad():
optimal_k = self.model.calculate_optimal_k(' '.join(abs_lines), k_max=10)
# Perform kmean clustering
clustering_model = KMeans(n_clusters=optimal_k, n_init=20)
# clustering_model = AgglomerativeClustering(n_clusters=optimal_k, affinity='cosine', linkage='average') #, affinity='cosine', linkage='average', distance_threshold=0.4)
clustering_model.fit(corpus_embeddings)
cluster_assignment = clustering_model.labels_
clustered_sentences = {}
dummy_count = 0
for sentence_id, cluster_id in enumerate(cluster_assignment):
if cluster_id not in clustered_sentences:
clustered_sentences[cluster_id] = []
'''
if dummy_count < 5:
self.print_fn("abs_line: "+abs_lines[sentence_id])
self.print_fn("cluster_ID: "+str(cluster_id))
self.print_fn("embedding: "+str(corpus_embeddings[sentence_id]))
dummy_count += 1
'''
clustered_sentences[cluster_id].append(abs_lines[sentence_id])
# for i, cluster in clustered_sentences.items():
# self.print_fn("Cluster ", i+1)
# self.print_fn(cluster)
# self.print_fn("")
return self.get_clustered_sections(clustered_sentences), clustered_sentences
def get_clusters(self, papers, papers_meta):
from sklearn.cluster import KMeans
# from bertopic import BERTopic
# topic_model = BERTopic(embedding_model=embedder)
if 'cuda' in self.torch_device:
torch.cuda.empty_cache()
abs_lines = self.get_sectioned_docs(papers, papers_meta)
corpus_embeddings = self.embedder.encode(abs_lines)
# Normalize the embeddings to unit length
corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1, keepdims=True)
with torch.no_grad():
optimal_k = self.model.calculate_optimal_k(' '.join(abs_lines), k_max=10)
# Perform kmean clustering
clustering_model = KMeans(n_clusters=optimal_k, n_init=20)
# clustering_model = AgglomerativeClustering(n_clusters=optimal_k, affinity='cosine', linkage='average') #, affinity='cosine', linkage='average', distance_threshold=0.4)
clustering_model.fit(corpus_embeddings)
cluster_assignment = clustering_model.labels_
clustered_sentences = {}
dummy_count = 0
for sentence_id, cluster_id in enumerate(cluster_assignment):
if cluster_id not in clustered_sentences:
clustered_sentences[cluster_id] = []
'''
if dummy_count < 5:
self.print_fn("abs_line: "+abs_lines[sentence_id])
self.print_fn("cluster_ID: "+str(cluster_id))
self.print_fn("embedding: "+str(corpus_embeddings[sentence_id]))
dummy_count += 1
'''
clustered_sentences[cluster_id].append(abs_lines[sentence_id])
# for i, cluster in clustered_sentences.items():
# self.print_fn("Cluster ", i+1)
# self.print_fn(cluster)
# self.print_fn("")
return self.get_clustered_sections(clustered_sentences), clustered_sentences
def generate_title(self, longtext):
if 'cuda' in self.torch_device:
torch.cuda.empty_cache()
inputs = self.title_tokenizer.prepare_seq2seq_batch(longtext, truncation=True, padding='longest',
return_tensors='pt').to(self.torch_device)
with torch.no_grad():
summary_ids = self.title_model.generate(**inputs)
summary = self.title_tokenizer.batch_decode(summary_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
return str(summary[0])
def get_clustered_sections(self, clustered_lines):
clusters_dict = {}
for i, cluster in clustered_lines.items():
# self.print_fn(cluster)
try:
clusters_dict[self.generate_title(str(" ".join(cluster)))] = self.abstractive_summary(
str(" ".join(cluster)).lower())
except:
clusters_dict[self.generate_title(str(" ".join(cluster)))] = self.abstractive_summary(
self.extractive_summary(str(" ".join(cluster)).lower()))
return clusters_dict
def get_intro(self, corpus_known_sections, research_blocks):
intro_lines = ""
intro_lines += str(" ".join([l.lower() for l in corpus_known_sections['introduction']])) + str(
" ".join([l.lower() for l in corpus_known_sections['conclusion']]))
intro_lines += research_blocks['introduction'] + research_blocks['conclusion']
try:
return self.abstractive_summary(intro_lines)
except:
return self.abstractive_summary(self.extractive_summary(intro_lines))
def get_conclusion(self, research_sections):
paper_body = ""
for k, v in research_sections.items():
paper_body += v
try:
return self.abstractive_summary(paper_body)
except:
return self.abstractive_summary(self.extractive_summary(paper_body))
def build_corpus_sectionwise(self, papers):
known = ['abstract', 'introduction', 'conclusion']
corpus_known_sections = {}
for kh in known:
khtext = []
for p in papers:
for section in p['sections']:
if kh in section['heading']:
khtext.extend(section['highlights'])
# self.print_fn(khtext)
corpus_known_sections[kh] = khtext
return corpus_known_sections
def standardize_headings(self, papers):
known = ['abstract', 'introduction', 'discussion', 'relatedwork', 'contribution', 'analysis', 'experiments',
'conclusion']
for p in papers:
# self.print_fn("================================")
headings = [section['heading'] for section in p['sections'] if len(section['heading'].split()) < 3]
# self.print_fn("id: "+ str(p['id'])+"\nHeadings: \n"+str('\n'.join(headings)))
for kh in known:
for section in p['sections']:
if len(section['heading'].split()) < 3:
# self.print_fn(section['heading'])
if kh in ''.join(filter(str.isalpha, section['heading'].replace(' ', '').lower())):
# self.print_fn("orig head: "+ section['heading'] +", plain head:" + kh)
section['heading'] = kh
return papers
def build_corpus(self, papers, papers_meta):
corpus = self.build_meta_corpus(papers_meta)
for p in papers:
ph = []
for sid, section in enumerate(p['sections']):
ph.extend(section['highlights'])
for pid, ls in corpus.items():
if pid == p['id']:
corpus[pid] = p['abstract'] + str(' '.join(ph))
'''
self.print_fn("================== final corpus ====================")
self.print_fn('\n'.join([str("paper: "+ get_by_pid(pid, papers_meta)['title']+" \nhighlight count: " + str(len(phs))) for pid, phs in corpus.items()]))
self.print_fn("======== sample point ========")
p = random.choice(list(papers))
self.print_fn("paper: "+ p['title']+" \nhighlights: " + str(corpus[p['id']]))
self.print_fn("======== sample meta point ========")
p = random.choice(list(papers_meta))
self.print_fn("meta paper: "+ p['title']+" \nhighlights: " + str(corpus[p['id']]))
'''
return corpus
def get_by_pid(self, pid, papers):
for p in papers:
if p['id'] == pid:
return p
def build_meta_corpus(self, papers):
meta_corpus = {}
for p in papers:
# pself.print_fn(p)
pid = p['id']
ptext = p['title'] + ". " + p['abstract']
doc = self.nlp(ptext)
phs, _, _ = self.extractive_highlights([str(sent) for sent in list(doc.sents)])
meta_corpus[pid] = str(' '.join(phs))
'''
self.print_fn("================== meta corpus ====================")
self.print_fn('\n'.join([str("paper: "+ get_by_pid(pid, papers)['title']+" \nhighlight count: " + str(len(phs))) for pid, phs in meta_corpus.items()]))
self.print_fn("======== sample point ========")
p = random.choice(list(papers))
self.print_fn("paper: "+ p['title']+" \nhighlights: " + str(meta_corpus[p['id']]))
'''
return meta_corpus
def select_papers(self, papers, query, num_papers=20):
import numpy as np
# self.print_fn("paper sample: ")
# self.print_fn(papers)
meta_corpus = self.build_meta_corpus(papers)
scores = []
pids = []
for id, highlights in meta_corpus.items():
score = self.text_para_similarity(query, highlights)
scores.append(score)
pids.append(id)
self.print_fn("corpus item: " + str(self.get_by_pid(id, papers)['title']))
idx = np.argsort(scores)[:num_papers]
#for i in range(len(scores)):
# self.print_fn("paper: " + str(self.get_by_pid(pids[i], papers)['title']))
# self.print_fn("score: " + str(scores[i]))
# self.print_fn("argsort ids("+str(num_papers)+" papers): "+ str(idx))
idx = [pids[i] for i in idx]
# self.print_fn("argsort pids("+str(num_papers)+" papers): "+ str(idx))
papers_selected = [p for p in papers if p['id'] in idx]
# assert(len(papers_selected)==num_papers)
self.print_fn("num papers selected: " + str(len(papers_selected)))
for p in papers_selected:
self.print_fn("Selected Paper: " + p['title'])
self.print_fn("constrast with natural selection: forward")
for p in papers[:4]:
self.print_fn("Selected Paper: " + p['title'])
self.print_fn("constrast with natural selection: backward")
for p in papers[-4:]:
self.print_fn("Selected Paper: " + p['title'])
# arxiv search producing better relevnce
return papers_selected
def extractive_summary(self, text):
if 'cuda' in self.torch_device:
torch.cuda.empty_cache()
with torch.no_grad():
res = self.model(text, ratio=0.5)
res_doc = self.nlp(res)
return " ".join(set([str(sent) for sent in list(res_doc.sents)]))
def extractive_highlights(self, lines):
# text = " ".join(lines)
# text_doc = nlp(" ".join([l.lower() for l in lines]))
# text = ' '.join([ str(sent) for sent in list(text_doc.sents)])
if 'cuda' in self.torch_device:
torch.cuda.empty_cache()
with torch.no_grad():
res = self.model(" ".join([l.lower() for l in lines]), ratio=0.5, )
res_doc = self.nlp(res)
res_lines = set([str(sent) for sent in list(res_doc.sents)])
# self.print_fn("\n-".join(res_sents))
with torch.no_grad():
keywords = self.kw_model.extract_keywords(str(" ".join([l.lower() for l in lines])), stop_words='english')
keyphrases = self.kw_model.extract_keywords(str(" ".join([l.lower() for l in lines])),
keyphrase_ngram_range=(4, 4),
stop_words='english', use_mmr=True, diversity=0.7)
return res_lines, keywords, keyphrases
def extract_highlights(self, papers):
for p in papers:
sid = 0
p['sections'] = []
for heading, lines in p['body_text'].items():
hs, kws, kps = self.extractive_highlights(lines)
p['sections'].append({
'sid': sid,
'heading': heading,
'text': lines,
'highlights': hs,
'keywords': kws,
'keyphrases': kps,
})
sid += 1
return papers
def extract_structure(self, papers, pdf_dir, txt_dir, img_dir, dump_dir, tab_dir, tables=False):
self.print_fn("\n-extracting sections.. ")
papers, ids_none = self.extract_parts(papers, txt_dir, dump_dir)
self.print_fn("\n-extracting images.. for future correlation use-cases ")
papers = self.extract_images(papers, pdf_dir, img_dir)
if tables:
self.print_fn("\n-extracting tables.. for future correlation use-cases ")
papers = self.extract_tables(papers, pdf_dir, tab_dir)
return papers, ids_none
def extract_parts(self, papers, txt_dir, dump_dir):
headings_all = {}
# refined = []
# model = build_summarizer()
#for file in glob.glob(txt_dir + '/*.txt'):
for p in papers:
file = txt_dir + '/'+ p['id'] +'.txt'
refined, headings_extracted = self.extract_headings(file)
sections = self.extract_sections(headings_extracted, refined)
# highlights = {k: extract_highlights(model,v) for k, v in sections.items()}
#p = self.get_by_file(file, papers)
#if len(headings_extracted) > 3:
p['body_text'] = sections
# p['body_highlights'] = highlights
headings_all[p['id']] = headings_extracted
ids_none = {i: h for i, h in headings_all.items() if len(h) < 3}
'''
for f, h in headings_all.items():
if len(h) < 4:
self.print_fn("=================headings almost undetected================")
self.print_fn(f)
self.print_fn(h)
'''
# from pprint import pprint
# pself.print_fn({f: len(h) for f,h in headings_all.items()})
papers_none = [p for p in papers if p['id'] in ids_none]
for p in papers_none:
os.remove(txt_dir + '/'+ p['id'] + '.txt')
papers.remove(p)
return papers, ids_none
def check_para(self, df):
size = 0
for col in df.columns:
size += df[col].apply(lambda x: len(str(x))).median()
return size / len(df.columns) > 25
def scan_blocks(self, lines):
lines_mod = [line.strip().replace('\n', '') for line in lines if len(line.strip().replace('\n', '')) > 3]
for i in range(len(lines_mod)):
yield lines_mod[i:i + 3]
def extract_sections(self, headings, lines, min_part_length=2):
sections = {}
self.check_list_elems_in_list(headings, lines)
head_len = len(headings)
for i in range(len(headings) - 1):
start = headings[i]
end = headings[i + 1]
section = self.get_section(start, end, lines)
# self.print_fn(start + " : "+ str(len(section)) +" lines")
'''
if i > 0:
old = headings[i-1]
if len(section) < min_part_length + 1:
sections[old].extend(start)
sections[old].extend(section)
else:
sections[start] = section
else:
sections[start] = section
'''
sections[start] = section
return {k: v for k, v in sections.items()}
def is_rubbish(self, s, rubbish_tolerance=0.2, min_char_len=4):
# numbers = sum(c.isdigit() for c in s)
letters = sum(c.isalpha() for c in s)
spaces = sum(c.isspace() for c in s)
# others = len(s) - numbers - letters - spaces
if len(s) == 0:
return False
if ((len(s) - (letters + spaces)) / len(s) >= rubbish_tolerance) or self.alpha_length(s) < min_char_len:
return True
else:
return False
def get_section(self, first, last, lines):
try:
assert (first in lines)
assert (last in lines)
# start = lines.index( first ) + len( first )
# end = lines.index( last, start )
start = [i for i in range(len(lines)) if first is lines[i]][0]
end = [i for i in range(len(lines)) if last is lines[i]][0]
section_lines = lines[start + 1:end]
# self.print_fn("heading: " + str(first))
# self.print_fn("section_lines: "+ str(section_lines))
# self.print_fn(section_lines)
return section_lines
except ValueError:
self.print_fn("value error :")
self.print_fn("first heading :" + str(first) + ", second heading :" + str(last))
self.print_fn("first index :" + str(start) + ", second index :" + str(end))
return ""
def check_list_elems_in_list(self, headings, lines):
import numpy as np
# [self.print_fn(head) for head in headings if head not in lines ]
return np.all([True if head in lines else False for head in headings])
def check_first_char_upper(self, text):
for c in text:
if c.isspace():
continue
elif c.isalpha():
return c.isupper()
def extract_headings(self, txt_file):
import re
fulltext = self.read_paper(txt_file)
lines = self.clean_lines(fulltext)
refined, headings = self.scan_text(lines)
assert (self.check_list_elems_in_list(headings, refined))
headings = self.check_duplicates(headings)
# self.print_fn('===========================================')
# self.print_fn(txt_file +": first scan: \n"+str(len(headings))+" headings")
# self.print_fn('\n'.join(headings))
# scan_failed - rescan with first match for abstract hook
if len(headings) == 0:
# self.print_fn('===================')
# self.print_fn("run 1 failed")
abs_cans = [line for line in lines if 'abstract' in re.sub("\s+", "", line.strip().lower())]
if len(abs_cans) != 0:
abs_head = abs_cans[0]
refined, headings = self.scan_text(lines, abs_head=abs_head)
self.check_list_elems_in_list(headings, refined)
headings = self.check_duplicates(headings)
# self.print_fn('===================')
# self.print_fn(txt_file +": second scan: \n"+str(len(headings))+" headings")
# if len(headings) == 0:
# self.print_fn("heading scan failed completely")
return refined, headings
def check_duplicates(self, my_list):
my_finallist = []
dups = [s for s in my_list if my_list.count(s) > 1]
if len(dups) > 0:
[my_finallist.append(n) for n in my_list if n not in my_finallist]
# self.print_fn("original: "+str(len(my_list))+" new: "+str(len(my_finallist)))
return my_finallist
def clean_lines(self, text):
import numpy as np
import re
# doc = nlp(text)
# lines = [str(sent) for sent in doc.sents]
lines = text.replace('\r', '').split('\n')
lines = [line for line in lines if not self.is_rubbish(line)]
lines = [line for line in lines if
re.match("^[a-zA-Z1-9\.\[\]\(\):\-,\"\"\s]*$", line) and not 'Figure' in line and not 'Table' in line]
lengths_cleaned = [self.alpha_length(line) for line in lines]
mean_length_cleaned = np.median(lengths_cleaned)
lines_standardized = []
for line in lines:
if len(line) >= (1.8 * mean_length_cleaned):
first_half = line[0:len(line) // 2]
second_half = line[len(line) // 2 if len(line) % 2 == 0 else ((len(line) // 2) + 1):]
lines_standardized.append(first_half)
lines_standardized.append(second_half)
else:
lines_standardized.append(line)
return lines
def scan_text(self, lines, abs_head=None):
import re
# self.print_fn('\n'.join(lines))
record = False
headings = []
refined = []
for i in range(1, len(lines) - 4):
line = lines[i]
line = line.replace('\n', '').strip()
if 'abstract' in re.sub("\s+", "", line.strip().lower()) and len(line) - len('abstract') < 5 or (
abs_head is not None and abs_head in line):
record = True
headings.append(line)
refined.append(line)
if 'references' in re.sub("\s+", "", line.strip().lower()) and len(line) - len('references') < 5:
headings.append(line)
refined.append(line)
break
elif 'bibliography' in re.sub("\s+", "", line.strip().lower()) and len(line) - len('bibliography') < 5:
headings.append(line)
refined.append(line)
break
refined, headings = self.scanline(record, headings, refined, i, lines)
# self.print_fn('=========in scan_text loop i : '+str(i)+' heading count : '+str(len(headings))+' =========')
return refined, headings
def scanline(self, record, headings, refined, id, lines):
import numpy as np
import re
line = lines[id]
if not len(line) == 0:
# self.print_fn("in scanline")
# self.print_fn(line)
if record:
refined.append(line)
if len(lines[id - 1]) == 0 or len(lines[id + 1]) == 0 or re.match(
"^[1-9XVIABCD]{0,4}(\.{0,1}[1-9XVIABCD]{0,4}){0, 3}\s{0,2}[A-Z][a-zA-Z\:\-\s]*$",
line) and self.char_length(line) > 7:
# self.print_fn("candidate")
# self.print_fn(line)
if np.mean([len(s) for s in lines[id + 2:id + 6]]) > 40 and self.check_first_char_upper(
line) and re.match("^[a-zA-Z1-9\.\:\-\s]*$", line) and len(line.split()) < 10:
# if len(line) < 20 and np.mean([len(s) for s in lines[i+1:i+5]]) > 30 :
headings.append(line)
assert (line in refined)
# self.print_fn("selected")
# self.print_fn(line)
else:
known_headings = ['introduction', 'conclusion', 'abstract', 'references', 'bibliography']
missing = [h for h in known_headings if not np.any([True for head in headings if h in head])]
# for h in missing:
head = [line for h in missing if h in re.sub("\s+", "", line.strip().lower())]
# head = [line for known]
if len(head) > 0:
headings.append(head[0])
assert (head[0] in refined)
return refined, headings
def char_length(self, s):
# numbers = sum(c.isdigit() for c in s)
letters = sum(c.isalpha() for c in s)
# spaces = sum(c.isspace() for c in s)
# others = len(s) - numbers - letters - spaces
return letters
def get_by_file(self, file, papers):
import os
pid = os.path.basename(file)
pid = pid.replace('.txt', '').replace('.pdf', '')
for p in papers:
if p['id'] == pid:
return p
self.print_fn("\n-paper not found by file, \nfile: "+file+"\nall papers: "+', '.join([p['id'] for p in papers]))
def alpha_length(self, s):
# numbers = sum(c.isdigit() for c in s)
letters = sum(c.isalpha() for c in s)
spaces = sum(c.isspace() for c in s)
# others = len(s) - numbers - letters - spaces
return letters + spaces
def check_append(self, baselist, addstr):
check = False
for e in baselist:
if addstr in e:
check = True
if not check:
baselist.append(addstr)
return baselist
def extract_images(self, papers, pdf_dir, img_dir):
import fitz
# self.print_fn("in images")
for p in papers:
file = pdf_dir + p['id'] + ".pdf"
pdf_file = fitz.open(file)
images = []
for page_index in range(len(pdf_file)):
page = pdf_file[page_index]
images.extend(page.getImageList())
images_files = [self.save_image(pdf_file.extractImage(img[0]), i, p['id'], img_dir) for i, img in
enumerate(set(images)) if img[0]]
# self.print_fn(len(images_per_paper))
p['images'] = images_files
# self.print_fn(len(p.keys()))
# self.print_fn(papers[0].keys())
return papers
def extract_images_from_file(self, pdf_file_name, img_dir):
import fitz
pdf_file = fitz.open(pdf_file_name)
images = []
for page_index in range(len(pdf_file)):
page = pdf_file[page_index]
images.extend(page.getImageList())
images_files = [self.save_image(pdf_file.extractImage(img[0]), i, pdf_file_name.replace('.pdf', ''), img_dir) for i, img in
enumerate(set(images)) if img[0]]
return images_files
def save_image(self, base_image, img_index, pid, img_dir):
from PIL import Image
import io
image_bytes = base_image["image"]
# get the image extension
image_ext = base_image["ext"]
# load it to PIL
image = Image.open(io.BytesIO(image_bytes))
# save it to local disk
fname = img_dir + "/" + str(pid) + "_" + str(img_index + 1) + "." + image_ext
image.save(open(f"{fname}", "wb"))
# self.print_fn(fname)
return fname
def save_tables(self, dfs, pid, tab_dir):
# todo
dfs = [df for df in dfs if not self.check_para(df)]
files = []
for df in dfs:
filename = tab_dir + "/" + str(pid) + ".csv"
files.append(filename)
df.to_csv(filename, index=False)
return files
def extract_tables(self, papers, pdf_dir, tab_dir):
import tabula
check = True
# for file in glob.glob(pdf_dir+'/*.pdf'):
for p in papers:
dfs = tabula.read_pdf(pdf_dir + p['id'] + ".pdf", pages='all', multiple_tables=True, silent=True)
p['tables'] = self.save_tables(dfs, p['id'], tab_dir)
# self.print_fn(papers[0].keys())
return papers
def extract_tables_from_file(self, pdf_file_name, tab_dir):
import tabula
check = True
# for file in glob.glob(pdf_dir+'/*.pdf'):
dfs = tabula.read_pdf(pdf_file_name, pages='all', multiple_tables=True, silent=True)
return self.save_tables(dfs, pdf_file_name.replace('.pdf', ''), tab_dir)
def search(self, query_text=None, id_list=None, max_search=100):
import arxiv
from urllib.parse import urlparse
if query_text:
search = arxiv.Search(
query=query_text,
max_results=max_search,
sort_by=arxiv.SortCriterion.Relevance
)
else:
id_list = [id for id in id_list if '.' in id]
search = arxiv.Search(
id_list=id_list
)
results = [result for result in search.get()]
searched_papers = []
discarded_ids = []
for result in results:
id = urlparse(result.entry_id).path.split('/')[-1].split('v')[0]
if '.' in id:
paper = {
'id': id,
'title': result.title,
'comments': result.comment if result.journal_ref else "None",
'journal-ref': result.journal_ref if result.journal_ref else "None",
'doi': str(result.doi),
'primary_category': result.primary_category,
'categories': result.categories,
'license': None,
'abstract': result.summary,
'published': result.published,
'pdf_url': result.pdf_url,
'links': [str(l) for l in result.links],
'update_date': result.updated,
'authors': [str(a.name) for a in result.authors],
}
searched_papers.append(paper)
else:
discarded_ids.append(urlparse(result.entry_id).path.split('/')[-1].split('v')[0])
self.print_fn("\n-Papers discarded due to id error [arxiv api bug: #74] :\n" + str(discarded_ids))
return results, searched_papers
def download_pdfs(self, papers, pdf_dir):
import arxiv
from urllib.parse import urlparse
ids = [p['id'] for p in papers]
self.print_fn("\n-downloading below selected papers: ")
self.print_fn(ids)
# asert(False)
papers_filtered = arxiv.Search(id_list=ids).get()
for p in papers_filtered:
p_id = str(urlparse(p.entry_id).path.split('/')[-1]).split('v')[0]
download_file = pdf_dir + "/" + p_id + ".pdf"
p.download_pdf(filename=download_file)
def download_sources(self, papers, src_dir):
import arxiv
from urllib.parse import urlparse
ids = [p['id'] for p in papers]
self.print_fn(ids)
# asert(False)
papers_filtered = arxiv.Search(id_list=ids).get()
for p in papers_filtered:
p_id = str(urlparse(p.entry_id).path.split('/')[-1]).split('v')[0]
download_file = src_dir + "/" + p_id + ".tar.gz"
p.download_source(filename=download_file)
def convert_pdfs(self, pdf_dir, txt_dir):
import glob, shutil
import multiprocessing
# import arxiv_public_data
convert_directory_parallel(pdf_dir, multiprocessing.cpu_count())
for file in glob.glob(pdf_dir + '/*.txt'):
shutil.move(file, txt_dir)
def read_paper(self, path):
f = open(path, 'r', encoding="utf-8")
text = str(f.read())
f.close()
return text
def cocitation_network(self, papers, txt_dir):
import multiprocessing
cites = internal_citations.citation_list_parallel(N=multiprocessing.cpu_count(), directory=txt_dir)
self.print_fn("\n-citation-network: ")
self.print_fn(cites)
for p in papers:
p['cites'] = cites[p['id']]
return papers, cites
def lookup_author(self, author_query):
from scholarly import scholarly
import operator
# Retrieve the author's data, fill-in, and print
self.print_fn("Searching Author: " + author_query)
search_result = next(scholarly.search_author(author_query), None)
if search_result is not None:
author = scholarly.fill(search_result)
author_stats = {
'name': author_query,
'affiliation': author['affiliation'] if author['affiliation'] else None,
'citedby': author['citedby'] if 'citedby' in author.keys() else 0,
'most_cited_year': max(author['cites_per_year'].items(), key=operator.itemgetter(1))[0] if len(
author['cites_per_year']) > 0 else None,
'coauthors': [c['name'] for c in author['coauthors']],
'hindex': author['hindex'],
'impact': author['i10index'],
'interests': author['interests'],
'publications': [{'title': p['bib']['title'], 'citations': p['num_citations']} for p in
author['publications']],
'url_picture': author['url_picture'],
}
else:
self.print_fn("author not found")
author_stats = {
'name': author_query,
'affiliation': "",
'citedby': 0,
'most_cited_year': None,
'coauthors': [],
'hindex': 0,
'impact': 0,
'interests': [],
'publications': [],
'url_picture': "",
}
# pself.print_fn(author_stats)
return author_stats
def author_stats(self, papers):
all_authors = []
for p in papers:
paper_authors = [a for a in p['authors']]
all_authors.extend(paper_authors)
searched_authors = [self.lookup_author(a) for a in set(all_authors)]
return searched_authors
def text_similarity(self, text1, text2):
doc1 = self.similarity_nlp(text1)
doc2 = self.similarity_nlp(text2)
return doc1.similarity(doc2)
def text_para_similarity(self, text, lines):
doc1 = self.similarity_nlp(text)
doc2 = self.similarity_nlp(" ".join(lines))
return doc1.similarity(doc2)
def para_para_similarity(self, lines1, lines2):
doc1 = self.similarity_nlp(" ".join(lines1))
doc2 = self.similarity_nlp(" ".join(lines2))
return doc1.similarity(doc2)
def text_image_similarity(self, text, image):
pass
def ask(self, corpus, question):
text = " ".join(corpus)
import torch
inputs = self.qatokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = self.qamodel(**inputs, start_positions=start_positions, end_positions=end_positions)
self.print_fn("context: " + text)
self.print_fn("question: " + question)
self.print_fn("outputs: " + outputs)
return outputs
def zip_outputs(self, dump_dir, query):
import zipfile
def zipdir(path, ziph):
# ziph is zipfile handle
for root, dirs, files in os.walk(path):
for file in files:
ziph.write(os.path.join(root, file),
os.path.relpath(os.path.join(root, file),
os.path.join(path, '../..')))
zip_name = 'arxiv_dumps_'+query.replace(' ', '_')+'.zip'
zipf = zipfile.ZipFile(zip_name, 'w', zipfile.ZIP_DEFLATED)
zipdir(dump_dir, zipf)
return zip_name
def survey(self, query=None, id_list=None, max_search=None, num_papers=None, debug=False, weigh_authors=False):
import joblib
import os, shutil
if not max_search:
max_search = self.DEFAULTS['max_search']
if not num_papers:
num_papers = self.DEFAULTS['num_papers']
if (query is None) and (id_list is None):
raise ValueError('please provide a base to survey on: list of arxiv IDs or a few research keywords')
# arxiv api relevance search and data preparation
self.print_fn("\n-searching arXiv for top 100 papers.. ")
results, searched_papers = self.search(query, id_list, max_search=max_search)
joblib.dump(searched_papers, self.dump_dir + 'papers_metadata.dmp')
self.print_fn("\n-found " + str(len(searched_papers)) + " papers")
# paper selection by scibert vector embedding relevance scores
# papers_selected = select_papers(searched_papers, query, num_papers=num_papers)
papers_highlighted, papers_selected = self.pdf_route(self.pdf_dir, self.txt_dir, self.img_dir, self.tab_dir, self.dump_dir,
searched_papers)
if weigh_authors:
authors = self.author_stats(papers_highlighted)
joblib.dump(papers_highlighted, self.dump_dir + 'papers_highlighted.dmp')
self.print_fn("\n-Standardizing known section headings per paper.. ")
papers_standardized = self.standardize_headings(papers_highlighted)
joblib.dump(papers_standardized, self.dump_dir + 'papers_standardized.dmp')
self.print_fn("\n-Building paper-wise corpus.. ")
corpus = self.build_corpus(papers_highlighted, searched_papers)
joblib.dump(corpus, self.dump_dir + 'corpus.dmp')
self.print_fn("\n-Building section-wise corpus.. ")
corpus_sectionwise = self.build_corpus_sectionwise(papers_standardized)
joblib.dump(corpus_sectionwise, self.dump_dir + 'corpus_sectionwise.dmp')
self.print_fn("\n-Building basic research highlights.. ")
research_blocks = self.build_basic_blocks(corpus_sectionwise, corpus)
joblib.dump(research_blocks, self.dump_dir + 'research_blocks.dmp')
self.print_fn("\n-Reducing corpus to lines.. ")
corpus_lines = self.get_corpus_lines(corpus)
joblib.dump(corpus_lines, self.dump_dir + 'corpus_lines.dmp')
# temp
# searched_papers = joblib.load(dump_dir + 'papers_metadata.dmp')
'''
papers_highlighted = joblib.load(dump_dir + 'papers_highlighted.dmp')
corpus = joblib.load(dump_dir + 'corpus.dmp')
papers_standardized = joblib.load(dump_dir + 'papers_standardized.dmp')
corpus_sectionwise = joblib.load(dump_dir + 'corpus_sectionwise.dmp')
research_blocks = joblib.load(dump_dir + 'research_blocks.dmp')
corpus_lines = joblib.load(dump_dir + 'corpus_lines.dmp')
'''
'''
self.print_fn("papers_highlighted types:"+ str(np.unique([str(type(p['sections'][0]['highlights'])) for p in papers_highlighted])))
self.print_fn("papers_highlighted example:")
self.print_fn(random.sample(list(papers_highlighted), 1)[0]['sections'][0]['highlights'])
self.print_fn("corpus types:"+ str(np.unique([str(type(txt)) for k,txt in corpus.items()])))
self.print_fn("corpus example:")
self.print_fn(random.sample(list(corpus.items()), 1)[0])
self.print_fn("corpus_lines types:"+ str(np.unique([str(type(txt)) for txt in corpus_lines])))
self.print_fn("corpus_lines example:")
self.print_fn(random.sample(list(corpus_lines), 1)[0])
self.print_fn("corpus_sectionwise types:"+ str(np.unique([str(type(txt)) for k,txt in corpus_sectionwise.items()])))
self.print_fn("corpus_sectionwise example:")
self.print_fn(random.sample(list(corpus_sectionwise.items()), 1)[0])
self.print_fn("research_blocks types:"+ str(np.unique([str(type(txt)) for k,txt in research_blocks.items()])))
self.print_fn("research_blocks example:")
self.print_fn(random.sample(list(research_blocks.items()), 1)[0])
'''
# self.print_fn("corpus types:"+ str(np.unique([type(txt) for k,txt in corpus.items()])))
self.print_fn("\n-Building abstract.. ")
abstract_block = self.get_abstract(corpus_lines, corpus_sectionwise, research_blocks)
joblib.dump(abstract_block, self.dump_dir + 'abstract_block.dmp')
'''
self.print_fn("abstract_block type:"+ str(type(abstract_block)))
self.print_fn("abstract_block:")
self.print_fn(abstract_block)
'''
self.print_fn("\n-Building introduction.. ")
intro_block = self.get_intro(corpus_sectionwise, research_blocks)
joblib.dump(intro_block, self.dump_dir + 'intro_block.dmp')
'''
self.print_fn("intro_block type:"+ str(type(intro_block)))
self.print_fn("intro_block:")
self.print_fn(intro_block)
'''
self.print_fn("\n-Building custom sections.. ")
clustered_sections, clustered_sentences = self.get_clusters(papers_standardized, searched_papers)
joblib.dump(clustered_sections, self.dump_dir + 'clustered_sections.dmp')
joblib.dump(clustered_sentences, self.dump_dir + 'clustered_sentences.dmp')
'''
self.print_fn("clusters extracted")
self.print_fn("clustered_sentences types:"+ str(np.unique([str(type(txt)) for k,txt in clustered_sentences.items()])))
self.print_fn("clustered_sentences example:")
self.print_fn(random.sample(list(clustered_sections.items()), 1)[0])
self.print_fn("clustered_sections types:"+ str(np.unique([str(type(txt)) for k,txt in clustered_sections.items()])))
self.print_fn("clustered_sections example:")
self.print_fn(random.sample(list(clustered_sections.items()), 1)[0])
'''
clustered_sections['abstract'] = abstract_block
clustered_sections['introduction'] = intro_block
joblib.dump(clustered_sections, self.dump_dir + 'research_sections.dmp')
self.print_fn("\n-Building conclusion.. ")
conclusion_block = self.get_conclusion(clustered_sections)
joblib.dump(conclusion_block, self.dump_dir + 'conclusion_block.dmp')
clustered_sections['conclusion'] = conclusion_block
'''
self.print_fn("conclusion_block type:"+ str(type(conclusion_block)))
self.print_fn("conclusion_block:")
self.print_fn(conclusion_block)
'''
survey_file = 'A_Survey_on_' + query.replace(' ', '_') + '.txt'
self.build_doc(clustered_sections, papers_standardized, query=query, filename=self.dump_dir + survey_file)
shutil.copytree('arxiv_data/', self.dump_dir + '/arxiv_data/')
shutil.copy(self.dump_dir + survey_file, survey_file)
assert (os.path.exists(survey_file))
output_zip = self.zip_outputs(self.dump_dir, query)
self.print_fn("\n-Survey complete.. \nSurvey file path :" + os.path.abspath(
survey_file) + "\nAll outputs zip path :" + os.path.abspath(self.dump_dir + output_zip))
return os.path.abspath(self.dump_dir + output_zip), os.path.abspath(survey_file)