s_d / app.py
sidhtang's picture
Create app.py
f942a54 verified
import os
import re
import torch
import logging
import numpy as np
import gradio as gr
from typing import List, Dict, Optional
from datetime import datetime
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
pipeline
)
from dataclasses import dataclass
import nltk
from nltk.tokenize import sent_tokenize
from neo4j import GraphDatabase
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# [All the existing classes from the first script remain the same]
@dataclass
class SentimentResult:
"""Structured class to hold sentiment analysis results"""
text: str
sentiment: str
score: float
confidence: float
intensity: str
class OptimizedSentimentAnalyzer:
def __init__(
self,
models: List[str] = None,
device: str = None,
max_length: int = 512
):
"""
Initialize sentiment analyzer with robust sequence handling
Args:
models: List of Hugging Face model names
device: Processing device (cuda/cpu)
max_length: Maximum token sequence length
"""
# Ensure NLTK resources are downloaded
try:
nltk.download('punkt', quiet=True)
except Exception as e:
logger.warning(f"Could not download NLTK resources: {e}")
self.device = device or ('cuda' if torch.cuda.is_available() else 'cpu')
self.model_configs = models or [
'cardiffnlp/twitter-roberta-base-sentiment-latest',
'finiteautomata/bertweet-base-sentiment-analysis'
]
# Configuration parameters
self.max_length = max_length
# Load models
self._load_models()
def _load_models(self):
"""Efficiently load sentiment analysis models with robust tokenization"""
self.analyzers = []
self.tokenizers = []
for model_name in self.model_configs:
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.tokenizers.append(tokenizer)
sentiment_pipeline = pipeline(
task="sentiment-analysis",
model=model,
tokenizer=tokenizer,
device=0 if self.device == 'cuda' else -1
)
self.analyzers.append(sentiment_pipeline)
logger.info(f"Successfully loaded model: {model_name}")
except Exception as e:
logger.warning(f"Could not load model {model_name}: {e}")
if not self.analyzers:
raise RuntimeError("No sentiment models could be loaded")
def _truncate_text(self, text: str, tokenizer) -> str:
"""
Intelligently truncate text to fit model's max length
Args:
text: Input text to truncate
tokenizer: Tokenizer for the specific model
Returns:
Truncated text
"""
# Tokenize and truncate
tokens = tokenizer.encode(
text,
add_special_tokens=True,
max_length=self.max_length,
truncation=True
)
# Decode back to text
return tokenizer.decode(tokens, skip_special_tokens=True)
def _process_long_text(self, text: str) -> List[str]:
"""
Split long text into manageable chunks
Args:
text: Full input text
Returns:
List of text chunks
"""
# Tokenize into sentences
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
for sentence in sentences:
# Estimate token length (rough approximation)
sentence_tokens = len(sentence.split())
# If adding this sentence would exceed max length, start a new chunk
if current_length + sentence_tokens > self.max_length - 50: # Leave room for special tokens
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_length = sentence_tokens
else:
current_chunk.append(sentence)
current_length += sentence_tokens
# Add final chunk
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def analyze_transcript(self, transcript: str) -> Dict:
"""
Analyze sentiment of a transcript with robust processing
Args:
transcript: Full transcript text
Returns:
Comprehensive sentiment analysis results
"""
# Validate input
if not transcript or not isinstance(transcript, str):
raise ValueError("Invalid transcript input")
# Process long text into chunks
text_chunks = self._process_long_text(transcript)
# Analyze each chunk
chunk_results = []
for chunk in text_chunks:
# Use the first tokenizer for truncation
truncated_chunk = self._truncate_text(chunk, self.tokenizers[0])
# Ensemble sentiment across multiple models
chunk_sentiments = []
for analyzer in self.analyzers:
try:
sentiment = analyzer(truncated_chunk)[0]
chunk_sentiments.append(sentiment)
except Exception as e:
logger.warning(f"Model sentiment analysis failed: {e}")
# Aggregate sentiments
if chunk_sentiments:
# Determine dominant sentiment
dominant_sentiment = max(
chunk_sentiments,
key=lambda x: x['score']
)
chunk_results.append(SentimentResult(
text=truncated_chunk,
sentiment=dominant_sentiment['label'],
score=dominant_sentiment['score'],
confidence=dominant_sentiment['score'],
intensity='moderate'
))
# Overall transcript analysis
if chunk_results:
overall_sentiment_score = np.mean([
result.score for result in chunk_results
])
return {
'overall_sentiment_score': float(overall_sentiment_score),
'chunk_results': [
{
'text': result.text,
'sentiment': result.sentiment,
'score': result.score
} for result in chunk_results
]
}
raise ValueError("Could not perform sentiment analysis")
class TranscriptParser:
"""Parse and extract conversations from transcript files"""
@staticmethod
def parse_timestamp(time_str: str) -> str:
"""
Convert timestamp from MM:SS format to full datetime
Args:
time_str: Timestamp in MM:SS format
Returns:
ISO formatted datetime
"""
try:
minutes, seconds = map(int, time_str.split(':'))
base_date = datetime.now()
return base_date.replace(
hour=0,
minute=minutes,
second=seconds,
microsecond=0
).isoformat()
except Exception as e:
logger.warning(f"Timestamp parsing failed: {e}")
return datetime.now().isoformat()
@classmethod
def extract_conversations(cls, text: str) -> List[Dict]:
"""
Extract structured conversations from transcript text
Args:
text: Full transcript text
Returns:
List of conversation dictionaries
"""
conversations = []
lines = text.strip().split('\n')
for line in lines:
if not line.strip():
continue
# Extract timestamp
timestamp_match = re.search(r'\[([0-9]{2}:[0-9]{2})\]', line)
if timestamp_match:
timestamp = timestamp_match.group(1)
# Remove timestamp from line
line = line.replace(f'[{timestamp}]', '').strip()
# Split speaker and content
parts = line.split(' ', 1)
if len(parts) > 1:
speaker, content = parts
conversations.append({
'timestamp': cls.parse_timestamp(timestamp),
'speaker': speaker,
'content': content
})
return conversations
class TranscriptProcessor:
"""
Process and store transcript sentiment analysis results
Handles database interaction and sentiment analysis
"""
def __init__(
self,
neo4j_uri: str = None,
neo4j_username: str = None,
neo4j_password: str = None
):
"""
Initialize transcript processor
Args:
neo4j_uri: Neo4j database URI
neo4j_username: Database username
neo4j_password: Database password
"""
# Use environment variables or fallback to default
self.neo4j_uri = neo4j_uri or os.getenv('NEO4J_URI', 'neo4j+s://5cbd784c.databases.neo4j.io')
self.neo4j_username = neo4j_username or os.getenv('NEO4J_USERNAME', 'neo4j')
self.neo4j_password = neo4j_password or os.getenv('NEO4J_PASSWORD', 'xwsXwnfCdaXWoEbf8uAQGM-F8lq-cLw1ZRkXORcErUQ')
# Initialize components
self.sentiment_analyzer = OptimizedSentimentAnalyzer()
try:
# Establish database connection
self.driver = GraphDatabase.driver(
self.neo4j_uri,
auth=(self.neo4j_username, self.neo4j_password)
)
logger.info("Successfully connected to Neo4j database")
except Exception as e:
logger.error(f"Database connection failed: {e}")
raise
def process_transcript(self, transcript_path: str):
"""
Comprehensive transcript processing workflow
Args:
transcript_path: Path to the transcript file
"""
try:
# Read transcript file
with open(transcript_path, 'r', encoding='utf-8') as file:
transcript_text = file.read()
# Extract conversations
conversations = TranscriptParser.extract_conversations(transcript_text)
# Analyze full transcript sentiment
sentiment_analysis = self.sentiment_analyzer.analyze_transcript(transcript_text)
# Store results in Neo4j
with self.driver.session() as session:
# Create transcript node
session.run(
"""
CREATE (t:Transcript {
overall_sentiment_score: $score,
processed_at: datetime(),
file_path: $path
})
""",
score=sentiment_analysis['overall_sentiment_score'],
path=transcript_path
)
# Store conversation segments
for conversation in conversations:
session.run(
"""
MATCH (t:Transcript {file_path: $path})
CREATE (c:Conversation {
speaker: $speaker,
content: $content,
timestamp: $timestamp
})
CREATE (t)-[:HAS_CONVERSATION]->(c)
""",
path=transcript_path,
**conversation
)
# Store sentiment chunks
for chunk in sentiment_analysis.get('chunk_results', []):
session.run(
"""
MATCH (t:Transcript {file_path: $path})
CREATE (s:SentimentChunk {
text: $text,
sentiment: $sentiment,
score: $score
})
CREATE (t)-[:HAS_SENTIMENT_CHUNK]->(s)
""",
path=transcript_path,
**chunk
)
logger.info(f"Successfully processed transcript: {transcript_path}")
return sentiment_analysis
except Exception as e:
logger.error(f"Transcript processing failed: {e}")
raise
def close(self):
"""Close database connection"""
if hasattr(self, 'driver'):
self.driver.close()
logger.info("Database connection closed")
def create_gradio_interface():
"""
Create and launch the Gradio interface for transcript sentiment analysis.
"""
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
def analyze_transcript(transcript_file):
"""
Wrapper function for Gradio to process transcript and format results.
Args:
transcript_file (str): Path to the uploaded transcript file
Returns:
str: Formatted sentiment analysis results
"""
try:
# Ensure file is uploaded
if transcript_file is None:
raise gr.Error("Please upload a transcript file.")
# Initialize the transcript processor
processor = TranscriptProcessor()
# Process the transcript
results = processor.process_transcript(transcript_file.name)
# Close database connection
processor.close()
# Format output
output = []
# Overall sentiment
output.append(f"🌈 Overall Sentiment Score: {results.get('overall_sentiment_score', 'N/A'):.2f}")
output.append("\n📊 Sentiment Chunks Analysis:\n")
# Individual chunk results
for idx, chunk in enumerate(results.get('chunk_results', []), 1):
output.append(f"Chunk {idx}:")
output.append(f" • Sentiment: {chunk.get('sentiment', 'N/A')}")
output.append(f" • Score: {chunk.get('score', 'N/A'):.2f}")
output.append(f" • Text: {chunk.get('text', 'N/A')[:100]}...\n")
return "\n".join(output)
except Exception as e:
return f"Error: {str(e)}"
# Ensure NLTK resources are downloaded
try:
nltk.download('punkt', quiet=True)
except Exception as e:
logger.warning(f"NLTK download failed: {e}")
# Create Gradio interface
with gr.Blocks(title="Transcript Sentiment Analyzer") as demo:
gr.Markdown("# 📊 Transcript Sentiment Analysis")
gr.Markdown("Upload a conversation transcript to analyze its sentiment.")
with gr.Row():
with gr.Column():
file_input = gr.File(
type="filepath",
label="Upload Transcript",
file_types=['.txt']
)
analyze_btn = gr.Button("Analyze Transcript", variant="primary")
with gr.Column():
output = gr.Textbox(
label="Sentiment Analysis Results",
lines=15,
placeholder="Results will appear here..."
)
# Connect components
analyze_btn.click(
fn=analyze_transcript,
inputs=file_input,
outputs=output
)
# Launch the interface
demo.launch(
debug=True,
show_error=True,
server_port=7860,
share=True # Creates a public link
)
if __name__ == "__main__":
# Ensure NLTK resources are downloaded
try:
nltk.download('punkt', quiet=True)
except Exception as e:
logger.warning(f"NLTK download failed: {e}")
# Launch the Gradio interface
create_gradio_interface()