Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,20 @@ import re
|
|
4 |
from groq import Groq
|
5 |
import pandas as pd
|
6 |
import matplotlib.pyplot as plt
|
|
|
7 |
import io
|
8 |
import base64
|
9 |
from datetime import datetime, timedelta
|
10 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def validate_api_key(api_key):
|
13 |
"""Validate if the API key has the correct format."""
|
@@ -41,18 +51,44 @@ def test_api_connection(api_key):
|
|
41 |
# Ensure analytics directory exists
|
42 |
os.makedirs("analytics", exist_ok=True)
|
43 |
|
44 |
-
def log_chat_interaction(model, tokens_used, response_time, user_message_length):
|
45 |
-
"""
|
46 |
timestamp = datetime.now().isoformat()
|
47 |
|
|
|
|
|
|
|
|
|
48 |
log_file = "analytics/chat_log.json"
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
log_entry = {
|
51 |
"timestamp": timestamp,
|
52 |
"model": model,
|
53 |
"tokens_used": tokens_used,
|
54 |
"response_time_sec": response_time,
|
55 |
-
"
|
|
|
|
|
|
|
|
|
|
|
56 |
}
|
57 |
|
58 |
# Append to existing log or create new file
|
@@ -69,6 +105,8 @@ def log_chat_interaction(model, tokens_used, response_time, user_message_length)
|
|
69 |
|
70 |
with open(log_file, "w") as f:
|
71 |
json.dump(logs, f, indent=2)
|
|
|
|
|
72 |
|
73 |
def get_template_prompt(template_name):
|
74 |
"""Get system prompt for a given template name"""
|
@@ -82,7 +120,7 @@ def get_template_prompt(template_name):
|
|
82 |
|
83 |
return templates.get(template_name, "")
|
84 |
|
85 |
-
def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name=""):
|
86 |
"""Enhanced chat function with analytics logging"""
|
87 |
start_time = datetime.now()
|
88 |
|
@@ -92,11 +130,11 @@ def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_token
|
|
92 |
# Validate and process as before
|
93 |
is_valid, message = validate_api_key(api_key)
|
94 |
if not is_valid:
|
95 |
-
return chat_history + [[user_message, f"Error: {message}"]]
|
96 |
|
97 |
connection_valid, connection_message = test_api_connection(api_key)
|
98 |
if not connection_valid:
|
99 |
-
return chat_history + [[user_message, f"Error: {connection_message}"]]
|
100 |
|
101 |
try:
|
102 |
# Format history
|
@@ -126,55 +164,137 @@ def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_token
|
|
126 |
response_time = (end_time - start_time).total_seconds()
|
127 |
tokens_used = response.usage.total_tokens
|
128 |
|
|
|
|
|
|
|
129 |
# Log the interaction
|
130 |
-
log_chat_interaction(
|
131 |
model=model,
|
132 |
tokens_used=tokens_used,
|
133 |
response_time=response_time,
|
134 |
-
user_message_length=
|
|
|
|
|
135 |
)
|
136 |
|
137 |
# Extract response
|
138 |
assistant_response = response.choices[0].message.content
|
139 |
|
140 |
-
return chat_history + [[user_message, assistant_response]]
|
141 |
|
142 |
except Exception as e:
|
143 |
error_message = f"Error: {str(e)}"
|
144 |
-
return chat_history + [[user_message, error_message]]
|
145 |
|
146 |
def clear_conversation():
|
147 |
"""Clear the conversation history."""
|
148 |
-
return []
|
149 |
|
150 |
def plt_to_html(fig):
|
151 |
"""Convert matplotlib figure to HTML img tag"""
|
152 |
buf = io.BytesIO()
|
153 |
-
fig.savefig(buf, format="png", bbox_inches="tight")
|
154 |
buf.seek(0)
|
155 |
img_str = base64.b64encode(buf.read()).decode("utf-8")
|
156 |
plt.close(fig)
|
157 |
return f'<img src="data:image/png;base64,{img_str}" alt="Chart">'
|
158 |
|
159 |
-
def
|
160 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
log_file = "analytics/chat_log.json"
|
162 |
|
163 |
if not os.path.exists(log_file):
|
164 |
-
return "No analytics data available yet.", None, None, None, []
|
165 |
|
166 |
try:
|
167 |
with open(log_file, "r") as f:
|
168 |
logs = json.load(f)
|
169 |
|
170 |
if not logs:
|
171 |
-
return "No analytics data available yet.", None, None, None, []
|
172 |
|
173 |
# Convert to DataFrame
|
174 |
df = pd.DataFrame(logs)
|
175 |
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
176 |
|
177 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
model_usage = df.groupby("model").agg({
|
179 |
"tokens_used": "sum",
|
180 |
"timestamp": "count"
|
@@ -182,48 +302,226 @@ def generate_analytics():
|
|
182 |
model_usage.columns = ["model", "total_tokens", "request_count"]
|
183 |
|
184 |
fig1 = plt.figure(figsize=(10, 6))
|
185 |
-
|
186 |
-
plt.title("Token Usage by Model")
|
187 |
-
plt.xlabel("Model")
|
188 |
-
plt.ylabel("Total Tokens Used")
|
189 |
plt.xticks(rotation=45)
|
|
|
|
|
|
|
|
|
|
|
190 |
plt.tight_layout()
|
191 |
model_usage_img = plt_to_html(fig1)
|
192 |
|
193 |
-
# Generate usage over time chart
|
194 |
df["date"] = df["timestamp"].dt.date
|
195 |
daily_usage = df.groupby("date").agg({
|
196 |
"tokens_used": "sum"
|
197 |
}).reset_index()
|
198 |
|
199 |
fig2 = plt.figure(figsize=(10, 6))
|
200 |
-
plt.plot(daily_usage["date"], daily_usage["tokens_used"], marker="o")
|
201 |
-
plt.title("Daily Token Usage")
|
202 |
-
plt.xlabel("Date")
|
203 |
-
plt.ylabel("Tokens Used")
|
204 |
-
plt.grid(True)
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
plt.tight_layout()
|
206 |
daily_usage_img = plt_to_html(fig2)
|
207 |
|
208 |
-
# Generate response time chart
|
209 |
model_response_time = df.groupby("model").agg({
|
210 |
-
"response_time_sec": "mean"
|
211 |
}).reset_index()
|
|
|
212 |
|
213 |
fig3 = plt.figure(figsize=(10, 6))
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
plt.xticks(rotation=45)
|
|
|
|
|
|
|
|
|
|
|
219 |
plt.tight_layout()
|
220 |
response_time_img = plt_to_html(fig3)
|
221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
# Summary statistics
|
223 |
total_tokens = df["tokens_used"].sum()
|
224 |
total_requests = len(df)
|
225 |
avg_response_time = df["response_time_sec"].mean()
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
# Handling the case where there might not be enough data
|
228 |
if not model_usage.empty:
|
229 |
most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"]
|
@@ -233,18 +531,30 @@ def generate_analytics():
|
|
233 |
summary = f"""
|
234 |
## Analytics Summary
|
235 |
|
236 |
-
|
|
|
237 |
- **Total Tokens Used**: {total_tokens:,}
|
|
|
238 |
- **Average Response Time**: {avg_response_time:.2f} seconds
|
239 |
- **Most Used Model**: {most_used_model}
|
240 |
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
"""
|
242 |
|
243 |
-
return summary, model_usage_img, daily_usage_img, response_time_img, df.to_dict("records")
|
244 |
|
245 |
except Exception as e:
|
246 |
error_message = f"Error generating analytics: {str(e)}"
|
247 |
-
return error_message, None, None, None, []
|
248 |
|
249 |
# Define available models
|
250 |
models = [
|
@@ -258,11 +568,17 @@ models = [
|
|
258 |
# Define templates
|
259 |
templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"]
|
260 |
|
|
|
|
|
|
|
261 |
# Create the Gradio interface
|
262 |
-
with gr.Blocks(title="Groq AI Chat Playground") as app:
|
|
|
|
|
|
|
263 |
gr.Markdown("# Groq AI Chat Playground")
|
264 |
|
265 |
-
# Create tabs for Chat and
|
266 |
with gr.Tabs():
|
267 |
with gr.Tab("Chat"):
|
268 |
# New model information accordion
|
@@ -360,82 +676,138 @@ with gr.Blocks(title="Groq AI Chat Playground") as app:
|
|
360 |
submit_button = gr.Button("Send", variant="primary")
|
361 |
clear_button = gr.Button("Clear Conversation")
|
362 |
|
363 |
-
# Analytics Dashboard Tab
|
364 |
with gr.Tab("Analytics Dashboard"):
|
365 |
with gr.Column():
|
366 |
-
gr.Markdown("# Usage Analytics Dashboard")
|
367 |
-
refresh_analytics_button = gr.Button("Refresh Analytics")
|
368 |
-
|
369 |
-
analytics_summary = gr.Markdown()
|
370 |
|
371 |
with gr.Row():
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
|
|
|
|
|
|
|
|
376 |
|
377 |
-
|
378 |
|
379 |
-
with gr.
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
chatbot,
|
412 |
-
template_dropdown
|
413 |
-
],
|
414 |
-
outputs=chatbot
|
415 |
-
).then(
|
416 |
-
fn=lambda: "",
|
417 |
-
inputs=None,
|
418 |
-
outputs=message_input
|
419 |
-
)
|
420 |
-
|
421 |
-
clear_button.click(
|
422 |
-
fn=clear_conversation,
|
423 |
-
inputs=None,
|
424 |
-
outputs=chatbot
|
425 |
-
)
|
426 |
-
|
427 |
-
test_button.click(
|
428 |
-
fn=test_api_connection,
|
429 |
-
inputs=[api_key_input],
|
430 |
-
outputs=[api_status]
|
431 |
-
)
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
439 |
-
# Launch the
|
440 |
if __name__ == "__main__":
|
441 |
-
app.launch(share=False)
|
|
|
4 |
from groq import Groq
|
5 |
import pandas as pd
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
import io
|
9 |
import base64
|
10 |
from datetime import datetime, timedelta
|
11 |
import json
|
12 |
+
import numpy as np
|
13 |
+
from statsmodels.tsa.arima.model import ARIMA
|
14 |
+
from sklearn.linear_model import LinearRegression
|
15 |
+
import calendar
|
16 |
+
import matplotlib.dates as mdates
|
17 |
+
|
18 |
+
# Set the style for better looking charts
|
19 |
+
plt.style.use('ggplot')
|
20 |
+
sns.set_palette("pastel")
|
21 |
|
22 |
def validate_api_key(api_key):
|
23 |
"""Validate if the API key has the correct format."""
|
|
|
51 |
# Ensure analytics directory exists
|
52 |
os.makedirs("analytics", exist_ok=True)
|
53 |
|
54 |
+
def log_chat_interaction(model, tokens_used, response_time, user_message_length, message_type, session_id=None):
|
55 |
+
"""Enhanced log chat interactions for analytics"""
|
56 |
timestamp = datetime.now().isoformat()
|
57 |
|
58 |
+
# Generate a session ID if none is provided
|
59 |
+
if session_id is None:
|
60 |
+
session_id = f"session_{datetime.now().strftime('%Y%m%d%H%M%S')}_{hash(timestamp) % 1000}"
|
61 |
+
|
62 |
log_file = "analytics/chat_log.json"
|
63 |
|
64 |
+
# Extract message intent/category through simple keyword matching
|
65 |
+
intent_categories = {
|
66 |
+
"code": ["code", "programming", "function", "class", "algorithm", "debug"],
|
67 |
+
"creative": ["story", "poem", "creative", "imagine", "write", "generate"],
|
68 |
+
"technical": ["explain", "how does", "technical", "details", "documentation"],
|
69 |
+
"data": ["data", "analysis", "statistics", "graph", "chart", "dataset"],
|
70 |
+
"general": [] # Default category
|
71 |
+
}
|
72 |
+
|
73 |
+
message_content = user_message_length.lower() if isinstance(user_message_length, str) else ""
|
74 |
+
message_intent = "general"
|
75 |
+
|
76 |
+
for intent, keywords in intent_categories.items():
|
77 |
+
if any(keyword in message_content for keyword in keywords):
|
78 |
+
message_intent = intent
|
79 |
+
break
|
80 |
+
|
81 |
log_entry = {
|
82 |
"timestamp": timestamp,
|
83 |
"model": model,
|
84 |
"tokens_used": tokens_used,
|
85 |
"response_time_sec": response_time,
|
86 |
+
"message_length": len(message_content) if isinstance(message_content, str) else user_message_length,
|
87 |
+
"message_type": message_type,
|
88 |
+
"message_intent": message_intent,
|
89 |
+
"session_id": session_id,
|
90 |
+
"day_of_week": datetime.now().strftime("%A"),
|
91 |
+
"hour_of_day": datetime.now().hour
|
92 |
}
|
93 |
|
94 |
# Append to existing log or create new file
|
|
|
105 |
|
106 |
with open(log_file, "w") as f:
|
107 |
json.dump(logs, f, indent=2)
|
108 |
+
|
109 |
+
return session_id
|
110 |
|
111 |
def get_template_prompt(template_name):
|
112 |
"""Get system prompt for a given template name"""
|
|
|
120 |
|
121 |
return templates.get(template_name, "")
|
122 |
|
123 |
+
def enhanced_chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history, template_name="", session_id=None):
|
124 |
"""Enhanced chat function with analytics logging"""
|
125 |
start_time = datetime.now()
|
126 |
|
|
|
130 |
# Validate and process as before
|
131 |
is_valid, message = validate_api_key(api_key)
|
132 |
if not is_valid:
|
133 |
+
return chat_history + [[user_message, f"Error: {message}"]], session_id
|
134 |
|
135 |
connection_valid, connection_message = test_api_connection(api_key)
|
136 |
if not connection_valid:
|
137 |
+
return chat_history + [[user_message, f"Error: {connection_message}"]], session_id
|
138 |
|
139 |
try:
|
140 |
# Format history
|
|
|
164 |
response_time = (end_time - start_time).total_seconds()
|
165 |
tokens_used = response.usage.total_tokens
|
166 |
|
167 |
+
# Determine message type based on template or content
|
168 |
+
message_type = template_name if template_name else "general"
|
169 |
+
|
170 |
# Log the interaction
|
171 |
+
session_id = log_chat_interaction(
|
172 |
model=model,
|
173 |
tokens_used=tokens_used,
|
174 |
response_time=response_time,
|
175 |
+
user_message_length=user_message,
|
176 |
+
message_type=message_type,
|
177 |
+
session_id=session_id
|
178 |
)
|
179 |
|
180 |
# Extract response
|
181 |
assistant_response = response.choices[0].message.content
|
182 |
|
183 |
+
return chat_history + [[user_message, assistant_response]], session_id
|
184 |
|
185 |
except Exception as e:
|
186 |
error_message = f"Error: {str(e)}"
|
187 |
+
return chat_history + [[user_message, error_message]], session_id
|
188 |
|
189 |
def clear_conversation():
|
190 |
"""Clear the conversation history."""
|
191 |
+
return [], None # Return empty chat history and reset session ID
|
192 |
|
193 |
def plt_to_html(fig):
|
194 |
"""Convert matplotlib figure to HTML img tag"""
|
195 |
buf = io.BytesIO()
|
196 |
+
fig.savefig(buf, format="png", bbox_inches="tight", dpi=100)
|
197 |
buf.seek(0)
|
198 |
img_str = base64.b64encode(buf.read()).decode("utf-8")
|
199 |
plt.close(fig)
|
200 |
return f'<img src="data:image/png;base64,{img_str}" alt="Chart">'
|
201 |
|
202 |
+
def predict_future_usage(df, days_ahead=7):
|
203 |
+
"""Predict future token usage based on historical data"""
|
204 |
+
if len(df) < 5: # Need a minimum amount of data for prediction
|
205 |
+
return None, "Insufficient data for prediction"
|
206 |
+
|
207 |
+
# Group by date and get total tokens per day
|
208 |
+
df['date'] = pd.to_datetime(df['timestamp']).dt.date
|
209 |
+
daily_data = df.groupby('date')['tokens_used'].sum().reset_index()
|
210 |
+
daily_data['date'] = pd.to_datetime(daily_data['date'])
|
211 |
+
|
212 |
+
# Sort by date
|
213 |
+
daily_data = daily_data.sort_values('date')
|
214 |
+
|
215 |
+
try:
|
216 |
+
# Simple linear regression for prediction
|
217 |
+
X = np.array(range(len(daily_data))).reshape(-1, 1)
|
218 |
+
y = daily_data['tokens_used'].values
|
219 |
+
|
220 |
+
model = LinearRegression()
|
221 |
+
model.fit(X, y)
|
222 |
+
|
223 |
+
# Predict future days
|
224 |
+
future_days = pd.date_range(
|
225 |
+
start=daily_data['date'].max() + timedelta(days=1),
|
226 |
+
periods=days_ahead
|
227 |
+
)
|
228 |
+
|
229 |
+
future_X = np.array(range(len(daily_data), len(daily_data) + days_ahead)).reshape(-1, 1)
|
230 |
+
predictions = model.predict(future_X)
|
231 |
+
|
232 |
+
# Create prediction dataframe
|
233 |
+
prediction_df = pd.DataFrame({
|
234 |
+
'date': future_days,
|
235 |
+
'predicted_tokens': np.maximum(predictions, 0) # Ensure no negative predictions
|
236 |
+
})
|
237 |
+
|
238 |
+
# Create visualization
|
239 |
+
fig = plt.figure(figsize=(12, 6))
|
240 |
+
plt.plot(daily_data['date'], daily_data['tokens_used'], 'o-', label='Historical Usage')
|
241 |
+
plt.plot(prediction_df['date'], prediction_df['predicted_tokens'], 'o--', label='Predicted Usage')
|
242 |
+
plt.title('Token Usage Forecast (Next 7 Days)')
|
243 |
+
plt.xlabel('Date')
|
244 |
+
plt.ylabel('Token Usage')
|
245 |
+
plt.legend()
|
246 |
+
plt.grid(True)
|
247 |
+
plt.xticks(rotation=45)
|
248 |
+
plt.tight_layout()
|
249 |
+
|
250 |
+
return plt_to_html(fig), prediction_df
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
return None, f"Error in prediction: {str(e)}"
|
254 |
+
|
255 |
+
def export_analytics_csv(df):
|
256 |
+
"""Export analytics data to CSV"""
|
257 |
+
try:
|
258 |
+
output_path = "analytics/export_" + datetime.now().strftime("%Y%m%d_%H%M%S") + ".csv"
|
259 |
+
df.to_csv(output_path, index=False)
|
260 |
+
return f"Data exported to {output_path}"
|
261 |
+
except Exception as e:
|
262 |
+
return f"Error exporting data: {str(e)}"
|
263 |
+
|
264 |
+
def generate_enhanced_analytics(date_range=None):
|
265 |
+
"""Generate enhanced analytics from the chat log"""
|
266 |
log_file = "analytics/chat_log.json"
|
267 |
|
268 |
if not os.path.exists(log_file):
|
269 |
+
return "No analytics data available yet.", None, None, None, None, None, None, None, None, []
|
270 |
|
271 |
try:
|
272 |
with open(log_file, "r") as f:
|
273 |
logs = json.load(f)
|
274 |
|
275 |
if not logs:
|
276 |
+
return "No analytics data available yet.", None, None, None, None, None, None, None, None, []
|
277 |
|
278 |
# Convert to DataFrame
|
279 |
df = pd.DataFrame(logs)
|
280 |
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
281 |
|
282 |
+
# Apply date filter if provided
|
283 |
+
if date_range and date_range != "all":
|
284 |
+
end_date = datetime.now()
|
285 |
+
|
286 |
+
if date_range == "last_7_days":
|
287 |
+
start_date = end_date - timedelta(days=7)
|
288 |
+
elif date_range == "last_30_days":
|
289 |
+
start_date = end_date - timedelta(days=30)
|
290 |
+
elif date_range == "last_90_days":
|
291 |
+
start_date = end_date - timedelta(days=90)
|
292 |
+
else: # Default to all time if unrecognized option
|
293 |
+
start_date = df["timestamp"].min()
|
294 |
+
|
295 |
+
df = df[(df["timestamp"] >= start_date) & (df["timestamp"] <= end_date)]
|
296 |
+
|
297 |
+
# 1. Generate usage by model chart
|
298 |
model_usage = df.groupby("model").agg({
|
299 |
"tokens_used": "sum",
|
300 |
"timestamp": "count"
|
|
|
302 |
model_usage.columns = ["model", "total_tokens", "request_count"]
|
303 |
|
304 |
fig1 = plt.figure(figsize=(10, 6))
|
305 |
+
ax1 = sns.barplot(x="model", y="total_tokens", data=model_usage)
|
306 |
+
plt.title("Token Usage by Model", fontsize=14)
|
307 |
+
plt.xlabel("Model", fontsize=12)
|
308 |
+
plt.ylabel("Total Tokens Used", fontsize=12)
|
309 |
plt.xticks(rotation=45)
|
310 |
+
|
311 |
+
# Add values on top of bars
|
312 |
+
for i, v in enumerate(model_usage["total_tokens"]):
|
313 |
+
ax1.text(i, v + 0.1, f"{v:,}", ha='center')
|
314 |
+
|
315 |
plt.tight_layout()
|
316 |
model_usage_img = plt_to_html(fig1)
|
317 |
|
318 |
+
# 2. Generate usage over time chart
|
319 |
df["date"] = df["timestamp"].dt.date
|
320 |
daily_usage = df.groupby("date").agg({
|
321 |
"tokens_used": "sum"
|
322 |
}).reset_index()
|
323 |
|
324 |
fig2 = plt.figure(figsize=(10, 6))
|
325 |
+
plt.plot(daily_usage["date"], daily_usage["tokens_used"], marker="o", linestyle="-", linewidth=2)
|
326 |
+
plt.title("Daily Token Usage", fontsize=14)
|
327 |
+
plt.xlabel("Date", fontsize=12)
|
328 |
+
plt.ylabel("Tokens Used", fontsize=12)
|
329 |
+
plt.grid(True, alpha=0.3)
|
330 |
+
|
331 |
+
# Format x-axis dates
|
332 |
+
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
|
333 |
+
plt.gca().xaxis.set_major_locator(mdates.AutoDateLocator())
|
334 |
+
|
335 |
+
plt.xticks(rotation=45)
|
336 |
plt.tight_layout()
|
337 |
daily_usage_img = plt_to_html(fig2)
|
338 |
|
339 |
+
# 3. Generate response time chart by model
|
340 |
model_response_time = df.groupby("model").agg({
|
341 |
+
"response_time_sec": ["mean", "median", "std"]
|
342 |
}).reset_index()
|
343 |
+
model_response_time.columns = ["model", "mean_time", "median_time", "std_time"]
|
344 |
|
345 |
fig3 = plt.figure(figsize=(10, 6))
|
346 |
+
ax3 = sns.barplot(x="model", y="mean_time", data=model_response_time)
|
347 |
+
|
348 |
+
# Add error bars
|
349 |
+
for i, v in enumerate(model_response_time["mean_time"]):
|
350 |
+
std = model_response_time.iloc[i]["std_time"]
|
351 |
+
if not np.isnan(std):
|
352 |
+
plt.errorbar(i, v, yerr=std, fmt='none', color='black', capsize=5)
|
353 |
+
|
354 |
+
plt.title("Response Time by Model", fontsize=14)
|
355 |
+
plt.xlabel("Model", fontsize=12)
|
356 |
+
plt.ylabel("Average Response Time (seconds)", fontsize=12)
|
357 |
plt.xticks(rotation=45)
|
358 |
+
|
359 |
+
# Add values on top of bars
|
360 |
+
for i, v in enumerate(model_response_time["mean_time"]):
|
361 |
+
ax3.text(i, v + 0.1, f"{v:.2f}s", ha='center')
|
362 |
+
|
363 |
plt.tight_layout()
|
364 |
response_time_img = plt_to_html(fig3)
|
365 |
|
366 |
+
# 4. Usage by time of day and day of week
|
367 |
+
if "hour_of_day" in df.columns and "day_of_week" in df.columns:
|
368 |
+
# Map day of week to ensure correct order
|
369 |
+
day_order = {day: i for i, day in enumerate(['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'])}
|
370 |
+
df['day_num'] = df['day_of_week'].map(day_order)
|
371 |
+
|
372 |
+
hourly_usage = df.groupby("hour_of_day").agg({
|
373 |
+
"tokens_used": "sum"
|
374 |
+
}).reset_index()
|
375 |
+
|
376 |
+
daily_usage_by_weekday = df.groupby("day_of_week").agg({
|
377 |
+
"tokens_used": "sum"
|
378 |
+
}).reset_index()
|
379 |
+
|
380 |
+
# Sort by day of week
|
381 |
+
daily_usage_by_weekday['day_num'] = daily_usage_by_weekday['day_of_week'].map(day_order)
|
382 |
+
daily_usage_by_weekday = daily_usage_by_weekday.sort_values('day_num')
|
383 |
+
|
384 |
+
fig4 = plt.figure(figsize=(18, 8))
|
385 |
+
|
386 |
+
# Hourly usage chart
|
387 |
+
plt.subplot(1, 2, 1)
|
388 |
+
sns.barplot(x="hour_of_day", y="tokens_used", data=hourly_usage)
|
389 |
+
plt.title("Token Usage by Hour of Day", fontsize=14)
|
390 |
+
plt.xlabel("Hour of Day", fontsize=12)
|
391 |
+
plt.ylabel("Total Tokens Used", fontsize=12)
|
392 |
+
plt.xticks(ticks=range(0, 24, 2))
|
393 |
+
|
394 |
+
# Daily usage chart
|
395 |
+
plt.subplot(1, 2, 2)
|
396 |
+
sns.barplot(x="day_of_week", y="tokens_used", data=daily_usage_by_weekday)
|
397 |
+
plt.title("Token Usage by Day of Week", fontsize=14)
|
398 |
+
plt.xlabel("Day of Week", fontsize=12)
|
399 |
+
plt.ylabel("Total Tokens Used", fontsize=12)
|
400 |
+
plt.xticks(rotation=45)
|
401 |
+
|
402 |
+
plt.tight_layout()
|
403 |
+
time_pattern_img = plt_to_html(fig4)
|
404 |
+
else:
|
405 |
+
time_pattern_img = None
|
406 |
+
|
407 |
+
# 5. Message intent/type analysis
|
408 |
+
if "message_intent" in df.columns:
|
409 |
+
intent_usage = df.groupby("message_intent").agg({
|
410 |
+
"tokens_used": "sum",
|
411 |
+
"timestamp": "count"
|
412 |
+
}).reset_index()
|
413 |
+
intent_usage.columns = ["intent", "total_tokens", "request_count"]
|
414 |
+
|
415 |
+
fig5 = plt.figure(figsize=(12, 10))
|
416 |
+
|
417 |
+
# Pie chart for intent distribution
|
418 |
+
plt.subplot(2, 1, 1)
|
419 |
+
plt.pie(intent_usage["request_count"], labels=intent_usage["intent"], autopct='%1.1f%%', startangle=90)
|
420 |
+
plt.axis('equal')
|
421 |
+
plt.title("Message Intent Distribution", fontsize=14)
|
422 |
+
|
423 |
+
# Bar chart for tokens by intent
|
424 |
+
plt.subplot(2, 1, 2)
|
425 |
+
sns.barplot(x="intent", y="total_tokens", data=intent_usage)
|
426 |
+
plt.title("Token Usage by Message Intent", fontsize=14)
|
427 |
+
plt.xlabel("Intent", fontsize=12)
|
428 |
+
plt.ylabel("Total Tokens Used", fontsize=12)
|
429 |
+
|
430 |
+
plt.tight_layout()
|
431 |
+
intent_analysis_img = plt_to_html(fig5)
|
432 |
+
else:
|
433 |
+
intent_analysis_img = None
|
434 |
+
|
435 |
+
# 6. Model comparison chart
|
436 |
+
if len(model_usage) > 1:
|
437 |
+
fig6 = plt.figure(figsize=(12, 8))
|
438 |
+
|
439 |
+
# Create metrics for comparison
|
440 |
+
model_comparison = df.groupby("model").agg({
|
441 |
+
"tokens_used": ["mean", "median", "sum"],
|
442 |
+
"response_time_sec": ["mean", "median"]
|
443 |
+
}).reset_index()
|
444 |
+
|
445 |
+
# Flatten column names
|
446 |
+
model_comparison.columns = [
|
447 |
+
f"{col[0]}_{col[1]}" if col[1] else col[0]
|
448 |
+
for col in model_comparison.columns
|
449 |
+
]
|
450 |
+
|
451 |
+
# Calculate token efficiency (tokens per second)
|
452 |
+
model_comparison["tokens_per_second"] = model_comparison["tokens_used_mean"] / model_comparison["response_time_sec_mean"]
|
453 |
+
|
454 |
+
# Normalize for radar chart
|
455 |
+
metrics = ['tokens_used_mean', 'response_time_sec_mean', 'tokens_per_second']
|
456 |
+
model_comparison_norm = model_comparison.copy()
|
457 |
+
|
458 |
+
for metric in metrics:
|
459 |
+
max_val = model_comparison[metric].max()
|
460 |
+
if max_val > 0: # Avoid division by zero
|
461 |
+
model_comparison_norm[f"{metric}_norm"] = model_comparison[metric] / max_val
|
462 |
+
|
463 |
+
# Bar chart comparison
|
464 |
+
plt.subplot(1, 2, 1)
|
465 |
+
x = np.arange(len(model_comparison["model"]))
|
466 |
+
width = 0.35
|
467 |
+
|
468 |
+
plt.bar(x - width/2, model_comparison["tokens_used_mean"], width, label="Avg Tokens")
|
469 |
+
plt.bar(x + width/2, model_comparison["response_time_sec_mean"], width, label="Avg Time (s)")
|
470 |
+
|
471 |
+
plt.xlabel("Model")
|
472 |
+
plt.ylabel("Value")
|
473 |
+
plt.title("Model Performance Comparison")
|
474 |
+
plt.xticks(x, model_comparison["model"], rotation=45)
|
475 |
+
plt.legend()
|
476 |
+
|
477 |
+
# Scatter plot for efficiency
|
478 |
+
plt.subplot(1, 2, 2)
|
479 |
+
sns.scatterplot(
|
480 |
+
x="response_time_sec_mean",
|
481 |
+
y="tokens_used_mean",
|
482 |
+
size="tokens_per_second",
|
483 |
+
hue="model",
|
484 |
+
data=model_comparison,
|
485 |
+
sizes=(100, 500)
|
486 |
+
)
|
487 |
+
|
488 |
+
plt.xlabel("Average Response Time (s)")
|
489 |
+
plt.ylabel("Average Tokens Used")
|
490 |
+
plt.title("Model Efficiency")
|
491 |
+
|
492 |
+
plt.tight_layout()
|
493 |
+
model_comparison_img = plt_to_html(fig6)
|
494 |
+
else:
|
495 |
+
model_comparison_img = None
|
496 |
+
|
497 |
+
# 7. Usage prediction chart
|
498 |
+
forecast_chart, prediction_data = predict_future_usage(df)
|
499 |
+
|
500 |
# Summary statistics
|
501 |
total_tokens = df["tokens_used"].sum()
|
502 |
total_requests = len(df)
|
503 |
avg_response_time = df["response_time_sec"].mean()
|
504 |
|
505 |
+
# Cost estimation (assuming average pricing)
|
506 |
+
# These rates are estimates and should be updated with actual rates
|
507 |
+
estimated_cost_rates = {
|
508 |
+
"llama3-70b-8192": 0.0001, # per token
|
509 |
+
"llama3-8b-8192": 0.00005,
|
510 |
+
"mistral-saba-24b": 0.00008,
|
511 |
+
"gemma2-9b-it": 0.00006,
|
512 |
+
"allam-2-7b": 0.00005
|
513 |
+
}
|
514 |
+
|
515 |
+
total_estimated_cost = 0
|
516 |
+
model_costs = []
|
517 |
+
|
518 |
+
for model_name in df["model"].unique():
|
519 |
+
model_tokens = df[df["model"] == model_name]["tokens_used"].sum()
|
520 |
+
rate = estimated_cost_rates.get(model_name, 0.00007) # Default to average rate if unknown
|
521 |
+
cost = model_tokens * rate
|
522 |
+
total_estimated_cost += cost
|
523 |
+
model_costs.append({"model": model_name, "tokens": model_tokens, "cost": cost})
|
524 |
+
|
525 |
# Handling the case where there might not be enough data
|
526 |
if not model_usage.empty:
|
527 |
most_used_model = model_usage.iloc[model_usage["request_count"].argmax()]["model"]
|
|
|
531 |
summary = f"""
|
532 |
## Analytics Summary
|
533 |
|
534 |
+
### Overview
|
535 |
+
- **Total API Requests**: {total_requests:,}
|
536 |
- **Total Tokens Used**: {total_tokens:,}
|
537 |
+
- **Estimated Cost**: ${total_estimated_cost:.2f}
|
538 |
- **Average Response Time**: {avg_response_time:.2f} seconds
|
539 |
- **Most Used Model**: {most_used_model}
|
540 |
- **Date Range**: {df["timestamp"].min().date()} to {df["timestamp"].max().date()}
|
541 |
+
|
542 |
+
### Model Costs Breakdown
|
543 |
+
{''.join([f"- **{cost['model']}**: {cost['tokens']:,} tokens / ${cost['cost']:.2f}\n" for cost in model_costs])}
|
544 |
+
|
545 |
+
### Usage Patterns
|
546 |
+
- **Busiest Day**: {df.groupby("date")["tokens_used"].sum().idxmax()} ({df[df["date"] == df.groupby("date")["tokens_used"].sum().idxmax()]["tokens_used"].sum():,} tokens)
|
547 |
+
- **Most Efficient Model**: {df.groupby("model")["response_time_sec"].mean().idxmin()} ({df.groupby("model")["response_time_sec"].mean().min():.2f}s avg response)
|
548 |
+
|
549 |
+
### Forecast
|
550 |
+
- **Projected Usage (Next 7 Days)**: {prediction_data["predicted_tokens"].sum():,.0f} tokens (estimated)
|
551 |
"""
|
552 |
|
553 |
+
return summary, model_usage_img, daily_usage_img, response_time_img, time_pattern_img, intent_analysis_img, model_comparison_img, forecast_chart, export_analytics_csv(df), df.to_dict("records")
|
554 |
|
555 |
except Exception as e:
|
556 |
error_message = f"Error generating analytics: {str(e)}"
|
557 |
+
return error_message, None, None, None, None, None, None, None, None, []
|
558 |
|
559 |
# Define available models
|
560 |
models = [
|
|
|
568 |
# Define templates
|
569 |
templates = ["General Assistant", "Code Helper", "Creative Writer", "Technical Expert", "Data Analyst"]
|
570 |
|
571 |
+
# Define date range options for analytics filtering
|
572 |
+
date_ranges = ["all", "last_7_days", "last_30_days", "last_90_days"]
|
573 |
+
|
574 |
# Create the Gradio interface
|
575 |
+
with gr.Blocks(title="Enhanced Groq AI Chat Playground") as app:
|
576 |
+
# Store session ID (hidden from UI)
|
577 |
+
session_id = gr.State(None)
|
578 |
+
|
579 |
gr.Markdown("# Groq AI Chat Playground")
|
580 |
|
581 |
+
# Create tabs for Chat, Analytics and Settings
|
582 |
with gr.Tabs():
|
583 |
with gr.Tab("Chat"):
|
584 |
# New model information accordion
|
|
|
676 |
submit_button = gr.Button("Send", variant="primary")
|
677 |
clear_button = gr.Button("Clear Conversation")
|
678 |
|
679 |
+
# Enhanced Analytics Dashboard Tab
|
680 |
with gr.Tab("Analytics Dashboard"):
|
681 |
with gr.Column():
|
682 |
+
gr.Markdown("# Enhanced Usage Analytics Dashboard")
|
|
|
|
|
|
|
683 |
|
684 |
with gr.Row():
|
685 |
+
refresh_analytics_button = gr.Button("Refresh Analytics", variant="primary")
|
686 |
+
date_filter = gr.Dropdown(
|
687 |
+
choices=date_ranges,
|
688 |
+
value="all",
|
689 |
+
label="Date Range Filter",
|
690 |
+
info="Filter analytics by time period"
|
691 |
+
)
|
692 |
+
export_button = gr.Button("Export Data to CSV")
|
693 |
|
694 |
+
analytics_summary = gr.Markdown()
|
695 |
|
696 |
+
with gr.Tabs():
|
697 |
+
with gr.Tab("Overview"):
|
698 |
+
with gr.Row():
|
699 |
+
with gr.Column():
|
700 |
+
model_usage_chart = gr.HTML(label="Token Usage by Model")
|
701 |
+
with gr.Column():
|
702 |
+
daily_usage_chart = gr.HTML(label="Daily Token Usage")
|
703 |
+
|
704 |
+
response_time_chart = gr.HTML(label="Response Time by Model")
|
705 |
+
|
706 |
+
with gr.Tab("Usage Patterns"):
|
707 |
+
time_pattern_chart = gr.HTML(label="Usage by Time and Day")
|
708 |
+
intent_analysis_chart = gr.HTML(label="Message Intent Analysis")
|
709 |
+
|
710 |
+
with gr.Tab("Model Comparison"):
|
711 |
+
model_comparison_chart = gr.HTML(label="Model Performance Comparison")
|
712 |
+
|
713 |
+
with gr.Tab("Forecast"):
|
714 |
+
forecast_chart = gr.HTML(label="Token Usage Forecast")
|
715 |
+
gr.Markdown("""This forecast uses linear regression on your historical data to predict token usage for the next 7 days.
|
716 |
+
Note that predictions become more accurate with more usage data.""")
|
717 |
+
|
718 |
+
with gr.Tab("Raw Data"):
|
719 |
+
raw_data_table = gr.DataFrame(label="Raw Analytics Data")
|
720 |
+
export_status = gr.Textbox(label="Export Status")
|
721 |
+
|
722 |
+
# Define functions for button callbacks
|
723 |
+
def test_api_connection_btn(api_key):
|
724 |
+
"""Callback for testing API connection"""
|
725 |
+
is_valid, validation_message = validate_api_key(api_key)
|
726 |
+
if not is_valid:
|
727 |
+
return validation_message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
728 |
|
729 |
+
connection_valid, connection_message = test_api_connection(api_key)
|
730 |
+
return connection_message
|
731 |
+
|
732 |
+
def refresh_analytics_callback(date_range):
|
733 |
+
"""Callback for refreshing analytics dashboard"""
|
734 |
+
return generate_enhanced_analytics(date_range)
|
735 |
+
|
736 |
+
def export_data_callback(df_records):
|
737 |
+
"""Callback for exporting data to CSV"""
|
738 |
+
try:
|
739 |
+
df = pd.DataFrame(df_records)
|
740 |
+
return export_analytics_csv(df)
|
741 |
+
except Exception as e:
|
742 |
+
return f"Error exporting data: {str(e)}"
|
743 |
+
|
744 |
+
# Set up event handlers
|
745 |
+
test_button.click(
|
746 |
+
test_api_connection_btn,
|
747 |
+
inputs=[api_key_input],
|
748 |
+
outputs=[api_status]
|
749 |
+
)
|
750 |
+
|
751 |
+
submit_button.click(
|
752 |
+
enhanced_chat_with_groq,
|
753 |
+
inputs=[
|
754 |
+
api_key_input,
|
755 |
+
model_dropdown,
|
756 |
+
message_input,
|
757 |
+
temperature_slider,
|
758 |
+
max_tokens_slider,
|
759 |
+
top_p_slider,
|
760 |
+
chatbot,
|
761 |
+
template_dropdown,
|
762 |
+
session_id
|
763 |
+
],
|
764 |
+
outputs=[chatbot, session_id]
|
765 |
+
)
|
766 |
+
|
767 |
+
message_input.submit(
|
768 |
+
enhanced_chat_with_groq,
|
769 |
+
inputs=[
|
770 |
+
api_key_input,
|
771 |
+
model_dropdown,
|
772 |
+
message_input,
|
773 |
+
temperature_slider,
|
774 |
+
max_tokens_slider,
|
775 |
+
top_p_slider,
|
776 |
+
chatbot,
|
777 |
+
template_dropdown,
|
778 |
+
session_id
|
779 |
+
],
|
780 |
+
outputs=[chatbot, session_id]
|
781 |
+
)
|
782 |
+
|
783 |
+
clear_button.click(
|
784 |
+
clear_conversation,
|
785 |
+
outputs=[chatbot, session_id]
|
786 |
+
)
|
787 |
+
|
788 |
+
refresh_analytics_button.click(
|
789 |
+
refresh_analytics_callback,
|
790 |
+
inputs=[date_filter],
|
791 |
+
outputs=[
|
792 |
+
analytics_summary,
|
793 |
+
model_usage_chart,
|
794 |
+
daily_usage_chart,
|
795 |
+
response_time_chart,
|
796 |
+
time_pattern_chart,
|
797 |
+
intent_analysis_chart,
|
798 |
+
model_comparison_chart,
|
799 |
+
forecast_chart,
|
800 |
+
export_status,
|
801 |
+
raw_data_table
|
802 |
+
]
|
803 |
+
)
|
804 |
+
|
805 |
+
export_button.click(
|
806 |
+
export_data_callback,
|
807 |
+
inputs=[raw_data_table],
|
808 |
+
outputs=[export_status]
|
809 |
+
)
|
810 |
|
811 |
+
# Launch the application
|
812 |
if __name__ == "__main__":
|
813 |
+
app.launch(share=False) # Set share=True for public URL
|